当前位置: X-MOL 学术Chem. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Decade with Quantum Coherence: How our Past Became Classical and the Future Turned Quantum
Chemical Physics ( IF 2.3 ) Pub Date : 2020-01-02 , DOI: 10.1016/j.chemphys.2019.110663
Tomáš Mančal

Some twelve years ago, Nature published an article reporting an evidence for wavelike energy transfer in the Fenna-Mattews-Olson complex, a small photosynthetic antenna isolated from green bacteria [Engel et al.Nature 446 (2007) 782]. In a broader sense, this publication marks a start of a complicated series of events, which constitute a part of what could be called a quantum revolution in biology. In this paper, we revisit the past decade of development in theoretical understanding of excitation energy transfer (EET) in photosynthesis under the influence of the new quantum vision of this field. In order to set the context, we review the status of the quantum theory of EET before the field has become a part of the broader discipline of quantum biology. We rephrase some of its former concepts in terms of decoherence theory and in the language of quasi-particles, to show the place, which theoretical photosynthesis research occupied in the big picture of quantum mechanics, physical chemistry and solid state physics before the supposed quantum revolution. We examine the influence of the new quantum-biological vocabulary, established over past ten years, on the development of the field. While the field has shown steady progress, directly related to the finds of Engel et al., we demonstrate that concepts ill-defined in the context of photosynthesis research, and imported from other branches of physics, actually hinder understanding of important natural photo-physical processes. Without providing suitable equivalent or added value, they threaten to replace concepts, which tie photosynthesis research to the related disciplines of chemistry and solid state physics. We demonstrate these claims by analyzing in some detail several recent paradigmatic papers from high profile journals.



中文翻译:

量子连贯十年:我们的过去如何成为经典,未来如何转变为量子

大约十二年前,《自然》杂志发表了一篇文章,报道了在Fenna-Mattews-Olson复合体中进行波状能量转移的证据,Fenna-Mattews-Olson复合体是一种从绿色细菌中分离出来的小型光合天线[Engel等。大自然446(2007)782]。从广义上讲,该出版物标志着一系列复杂事件的开始,这些事件构成了生物学中所谓的量子革命的一部分。在本文中,我们在该领域新的量子视野的影响下,回顾了光合作用中的激发能转移(EET)的理论理解的过去十年的发展。为了设置背景,我们在该领域成为更广泛的量子生物学学科的一部分之前回顾了EET量子理论的地位。我们用去相干理论和准粒子的语言重新描述它的一些以前的概念,以显示理论光合作用研究在假定的量子革命之前在量子力学,物理化学和固态物理学的大背景下占据的位置。 。我们研究了过去十年建立的新的量子生物学词汇对该领域发展的影响。尽管该领域取得了稳步进展,但与恩格尔的发现直接相关等。,我们证明了在光合作用研究中定义不明确的概念,以及从物理学的其他分支引入的概念,实际上阻碍了对重要的自然光物理过程的理解。他们没有提供适当的等价或附加价值,就威胁要替换一些概念,这些概念将光合作用研究与化学和固态物理学的相关学科联系在一起。我们通过详细分析来自知名期刊的几篇近期范式论文来论证这些主张。

更新日期:2020-01-02
down
wechat
bug