当前位置: X-MOL 学术Langmuir › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effect of Dual-Cocatalyst Surface Modification on Photodegradation Activity, Pathway, and Mechanisms with Highly Efficient Ag/BaTiO3/MnOx.
Langmuir ( IF 3.7 ) Pub Date : 2020-01-09 , DOI: 10.1021/acs.langmuir.9b02714
Yongfei Cui 1 , Huanhuan Sun 1 , Guodong Shen 1 , Panpan Jing 1 , Yongping Pu 1
Affiliation  

Cocatalyst surface-loading has been regarded as an effective strategy to promote solar-energy-conversion efficiency. However, the potential influence of surface modification with cocatalysts on the photodegradation pathway and the underlying mechanisms is still unclear. Herein, we have used ferroelectric BaTiO3 as the substrate, and both the reduction cocatalyst Ag and the oxidation cocatalyst MnOx have been successfully loaded onto BaTiO3 simultaneously by a one-step photodeposition method as evidenced by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HRTEM). The influence of dual-cocatalyst surface-loading on photodegradation of rhodamine B has been systematically investigated for the first time. First, the dual-cocatalyst-modified BaTiO3 outperformed over the single-cocatalyst-loaded BaTiO3, and the photodegradation rate of Ag/BaTiO3/MnOx is about 3 times and 12 times as high as that of Ag/BaTiO3 and BaTiO3/MnOx, respectively. The credit is given to the synergistic effect between the reduction and oxidation cocatalysts, prompting charge carrier separation and migration as verified by the transient photocurrent, electrochemical impedance, and photoluminescence (PL) spectrum investigation. Second, in addition to the boosted photodegradation activity, the photodegradation pathway is found to be altered as well when using Ag/BaTiO3/MnOx. High-performance liquid chromatography (HPLC) analysis indicated that a highly selective stepwise deethylation process predominates over chromophore cleavage in the Ag/BaTiO3/MnOx system, while it is reverse for the Ag/BaTiO3 system. This phenomenon is attributed to the different dye molecule adsorption modes. Furthermore, the radical trapping experiment shows that holes play a major role in the degradation process, and the recycle test proves the excellent stability of Ag/BaTiO3/MnOx. Our findings may add another layer of understanding depth to cocatalyst surface modification in photodegradation applications.

中文翻译:

双助催化剂表面改性对高效Ag / BaTiO3 / MnOx的光降解活性,途径和机理的影响。

助催化剂的表面负载已被认为是提高太阳能转化效率的有效策略。然而,用助催化剂进行表面改性对光降解途径及其潜在机理的潜在影响仍不清楚。本文中,我们以铁电体BaTiO3为基材,通过一步光沉积法将还原助催化剂Ag和氧化助催化剂MnOx成功地同时负载到BaTiO3上,这是通过X射线光电子能谱(XPS),扫描电子证明的。显微镜(SEM)和高分辨率透射电子显微镜(HRTEM)。首次系统地研究了双助催化剂表面负载对若丹明B光降解的影响。第一的,双助催化剂改性的BaTiO3的性能优于单助催化剂负载的BaTiO3,Ag / BaTiO3 / MnOx的光降解速率分别约为Ag / BaTiO3和BaTiO3 / MnOx的3倍和12倍。归功于还原和氧化助催化剂之间的协同作用,可促进电荷载流子的分离和迁移,这已通过瞬态光电流,电化学阻抗和光致发光(PL)光谱研究证明。其次,除了提高光降解活性外,当使用Ag / BaTiO3 / MnOx时,光降解途径也被改变。高效液相色谱(HPLC)分析表明,在Ag / BaTiO3 / MnOx系统中,高选择性逐步脱乙基过程胜于发色团裂解,而对于Ag / BaTiO3系统则相反。这种现象归因于不同的染料分子吸附模式。此外,自由基捕获实验表明,空穴在降解过程中起主要作用,而循环测试证明了Ag / BaTiO3 / MnOx的优异稳定性。我们的发现可能会为光降解应用中的助催化剂表面改性增加另一层理解深度。
更新日期:2020-01-09
down
wechat
bug