当前位置: X-MOL 学术ACS Nano › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Phosphorus-Amine-Based Synthesis of Nanoscale Red Phosphorus for Application to Sodium-Ion Batteries.
ACS Nano ( IF 17.1 ) Pub Date : 2020-01-06 , DOI: 10.1021/acsnano.9b08282
Weili Liu 1 , Shunlong Ju 1 , Xuebin Yu 1
Affiliation  

Current methods for synthesizing nanoscale red phosphorus (NRP), including ball-milling and vaporization-condensation, have various limitations. More effective engineering of the properties of these materials would promote their application in sodium-ion batteries. Herein, we report a simple phosphorus-amine-based method for the scalable preparation of NRP with high yield. We confirm that red phosphorus is highly soluble in ethylenediamine and that addition of H+ precipitates a network of NRP, where the size distribution is controlled by the H+ concentration. Through the use of this method, uniform NRP with particle sizes of 5-10 nm was dispersed in situ on the surfaces of reduced graphene oxide (rGO) with a controllable loading ratio. We attribute the formation of this structure to strong adsorption between the red phosphorus-ethylenediamine complex and rGO. The binding between NRP/Na3P and rGO effectively stabilized the NRP on rGO throughout charging/discharging processes, therefore enabling the NRP-rGO composite to deliver a high capacity of 2057 mA h g-1 at a current density of 100 mA g-1 and excellent long-cycling performance.

中文翻译:

基于磷胺的纳米级红磷的合成,用于钠离子电池。

当前的合成纳米级红磷(NRP)的方法,包括球磨和汽化冷凝法,都有各种局限性。对这些材料的性能进行更有效的工程设计将促进它们在钠离子电池中的应用。在这里,我们报告了一种简单的基于磷胺的方法,可用于高收率的NRP的可扩展制备。我们确认红磷在乙二胺中的溶解度很高,并且H +的添加会沉淀NRP网络,其大小分布受H +浓度控制。通过使用该方法,将粒径为5-10 nm的均匀NRP原位分散在还原石墨烯(rGO)的表面上,且其负载比可控。我们将此结构的形成归因于红色磷-乙二胺复合物与rGO之间的强吸附。NRP / Na3P和rGO之间的结合在整个充电/放电过程中有效地稳定了rGO上的NRP,因此使NRP-rGO复合材料能够在100 mA g-1的电流密度下提供2057 mA h g-1的高容量,并且出色的长循环性能。
更新日期:2020-01-06
down
wechat
bug