当前位置: X-MOL 学术Annu. Rev. Earth Planet. Sci. › 论文详情
Marsh Processes and Their Response to Climate Change and Sea-Level Rise
Annual Review of Earth and Planetary Sciences ( IF 9.235 ) Pub Date : 2019-05-30 , DOI: 10.1146/annurev-earth-082517-010255
Duncan M. FitzGerald; Zoe Hughes

In addition to their being vital components of mid- to high-latitude coastal ecosystems, salt marshes contain 0.1% of global sequestered terrestrial carbon. Their sustainability is now threatened by accelerating sea-level rise (SLR) that has reached a rate that is many times greater than the rate at which they formed and evolved. Modeling studies have been instrumental in predicting how marsh systems will respond to greater frequencies and durations of tidal inundation and in quantifying thresholds when marshes will succumb and begin to disintegrate due to accelerating SLR. Over the short term, some researchers believe that biogeomorphic feedbacks will improve marsh survival through greater biomass productivity enhanced by warmer temperatures and higher carbon dioxide concentrations. Increased sedimentation rates are less likely due to lower-than-expected suspended sediment concentrations. The majority of marsh loss today is through wave-induced edge erosion that beneficially adds sediment to the system. Edge erosion is partly offset by upland marsh migration during SLR. ▪ Despite positive biogeomorphic feedbacks, many salt marshes will succumb to accelerating sea-level rise due to insufficient mineral sediment. ▪ The latest multivariate marsh modeling is producing predictions of marsh evolution under various sea-level rise scenarios. ▪ The least well-known variables in projecting changes to salt marshes are suspended sediment concentrations and net sediment influx to the marsh. ▪ We are in the infancy of understanding the importance and processes of marsh edge erosion and the overall dynamicism of marshes. ▪ This review defines the latest breakthroughs in understanding the response of salt marshes to accelerating sea-level rise and decreasing sediment supply. ▪ Climate change is accelerating sea-level rise, warming temperatures, and increasing carbon dioxide, all of which are impacting marsh vegetation and vertical accretion.
更新日期:2019-12-31

 

全部期刊列表>>
Springer Nature 2019高下载量文章和章节
化学/材料学中国作者研究精选
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
剑桥大学-
中南大学
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug