当前位置: X-MOL 学术Fluid Phase Equilibr. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Molecular insights into the microstructure of ethanol/water binary mixtures confined within typical 2D nanoslits: The role of the adsorbed layers induced by different solid surfaces
Fluid Phase Equilibria ( IF 2.8 ) Pub Date : 2020-04-01 , DOI: 10.1016/j.fluid.2019.112452
Yao Qin , Nana Zhao , Yudan Zhu , Yumeng Zhang , Qingwei Gao , Zhongyang Dai , Yajing You , Xiaohua Lu

Abstract With the emergence of membrane separation and heterogeneous catalysis applications that are associated with confined ethanol/water binary mixture in the pores of two-dimensional (2D) nanomaterials, understanding their confined microstructures is the first step for further relevant applications. In this work, molecular dynamics was performed to investigate the microstructure of ethanol/water binary mixture of 5% mole fraction confined within the four typical 2-nm width 2D-nanoslits (i.e. hBN, GO-0.2, GO-0.4 and Ti3C2(OH)2). Results demonstrated that different chemical properties of solid surfaces can induce distinctive microstructures of mixed fluid within the interfacial contact (adsorbed) layer and thus can result in different mobility of water molecules within the subcontact layer. The residence times of water molecules in the subcontact layer were found in the sequence of Ti3C2(OH)2 > hBN > GO-0.4 > GO-0.2, whereas their sequence of diffusion coefficient within the x-z plane was Ti3C2(OH)2 > hBN > GO-0.2 > GO-0.4. Detailed hydrogen bond (HB) microstructure analysis showed that a high average number of HBs (between fluid molecules of the interfacial contact layer and water molecules of the subcontact layer) induced by solid surfaces could facilitate water molecules to reside in the subcontact layer. Moreover, the small average number of HBs between the water molecules themselves in the subcontact layer could lead to high in-plane diffusion coefficients.

中文翻译:

乙醇/水二元混合物微观结构的分子洞察限制在典型的 2D 纳米狭缝内:不同固体表面诱导的吸附层的作用

摘要 随着与二维 (2D) 纳米材料孔中的受限乙醇/水二元混合物相关的膜分离和多相催化应用的出现,了解其受限微结构是进一步相关应用的第一步。在这项工作中,通过分子动力学研究了 5% 摩尔分数的乙醇/水二元混合物的微观结构,这些混合物被限制在四个典型的 2 nm 宽度 2D 纳米狭缝(即 hBN、GO-0.2、GO-0.4 和 Ti3C2(OH )2)。结果表明,固体表面的不同化学性质可以在界面接触(吸附)层内诱导混合流体的独特微观结构,从而导致子接触层内水分子的不同迁移率。水分子在子接触层中的停留时间顺序为 Ti3C2(OH)2 > hBN > GO-0.4 > GO-0.2,而它们在 xz 平面内的扩散系数顺序为 Ti3C2(OH)2 > hBN > GO-0.2 > GO-0.4。详细的氢键 (HB) 微观结构分析表明,固体表面诱导的高平均 HBs(界面接触层的流体分子和子接触层的水分子之间)可以促进水分子驻留在子接触层中。此外,子接触层中水分子本身之间的 HBs 平均数量较少,可能导致面内扩散系数较高。而它们在 xz 平面内的扩散系数顺序是 Ti3C2(OH)2 > hBN > GO-0.2 > GO-0.4。详细的氢键 (HB) 微观结构分析表明,固体表面诱导的高平均 HBs(界面接触层的流体分子和子接触层的水分子之间)可以促进水分子驻留在子接触层中。此外,子接触层中水分子本身之间的 HBs 平均数量较少,可能导致面内扩散系数较高。而它们在 xz 平面内的扩散系数顺序是 Ti3C2(OH)2 > hBN > GO-0.2 > GO-0.4。详细的氢键 (HB) 微观结构分析表明,固体表面诱导的高平均 HBs(界面接触层的流体分子和子接触层的水分子之间)可以促进水分子驻留在子接触层中。此外,子接触层中水分子本身之间的 HBs 平均数量较少,可能导致面内扩散系数较高。详细的氢键 (HB) 微观结构分析表明,固体表面诱导的高平均 HBs(界面接触层的流体分子和子接触层的水分子之间)可以促进水分子驻留在子接触层中。此外,子接触层中水分子本身之间的 HBs 平均数量较少,可能导致面内扩散系数较高。详细的氢键 (HB) 微观结构分析表明,固体表面诱导的高平均 HBs(界面接触层的流体分子和子接触层的水分子之间)可以促进水分子驻留在子接触层中。此外,子接触层中水分子本身之间的 HBs 平均数量较少,可能导致面内扩散系数较高。
更新日期:2020-04-01
down
wechat
bug