当前位置: X-MOL 学术Energy Storage Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nanohybrid TiN/Vertical Graphene for High-Performance Supercapacitor Applications
Energy Storage Materials ( IF 18.9 ) Pub Date : 2019-12-30 , DOI: 10.1016/j.ensm.2019.12.040
Hualei Qi , Samuel Yick , Oskar Francis , Adrian Murdock , Timothy van der Laan , Kostya (Ken) Ostrikov , Zheng Bo , Zhaojun Han , Avi Bendavid

Transition metal nitrides are promising materials for supercapacitor electrodes owing to their high electrochemical capacity and good chemical stability. However, it remains challenging to control crystallinity, electrical conductivity and electrochemical active sites in the common routes of synthesizing these materials. Here we use a one-step and scalable transferred arc method to prepare TiN nanoparticles, which possess a well-defined cubic crystal structure with a nano-size distribution of 5 – 20 nm. The TiN nanoparticles are then deposited onto plasma-produced vertical graphene (VG) support materials to form hybrid TiN/VG electrodes for supercapacitors. In aqueous Li2SO4 electrolyte operated at a voltage window of 1.0 V, the TiN/VG hybrid displays areal capacitance more than four times higher than that of commercial TiN deposited VG hybrid. As the voltage window is expanded to 1.8 V, the TiN/VG electrode can achieve areal capacitance of 9.0 mF cm-2 at a scan rate of 100 mV s-1 while maintaining 89.5% of the initial capacitance after 10,000 cycles, which are among the highest values reported for TiN nanoparticles. These results indicate that TiN nanoparticles produced by the transferred arc technique are highly promising for energy storage applications.



中文翻译:

用于高性能超级电容器应用的纳米混合TiN /垂直石墨烯

过渡金属氮化物由于其高电化学容量和良好的化学稳定性而成为用于超级电容器电极的有前途的材料。然而,在合成这些材料的常用途径中,控制结晶度,电导率和电化学活性位点仍然具有挑战性。在这里,我们使用一步法和可扩展的转移电弧方法制备TiN纳米粒子,该纳米粒子具有定义明确的立方晶体结构,纳米尺寸分布为5 – 20 nm。然后将TiN纳米颗粒沉积到等离子体产生的垂直石墨烯(VG)支撑材料上,以形成用于超级电容器的混合TiN / VG电极。在Li 2 SO 4水溶液中电解质在1.0 V的电压窗口下工作,TiN / VG混合材料的面电容比商用TiN沉积VG混合材料的面电容高四倍以上。随着电压窗口扩大到1.8 V,TiN / VG电极可以在100 mV s -1的扫描速率下获得9.0 mF cm -2的面电容,同时在10,000次循环后仍保持初始电容的89.5%。 TiN纳米颗粒报道的最高值。这些结果表明,通过转移电弧技术生产的TiN纳米粒子在储能应用中非常有前途。

更新日期:2019-12-30
down
wechat
bug