当前位置: X-MOL 学术Neural Netw. › 论文详情
Global collaboration through local interaction in competitive learning
Neural Networks ( IF 5.785 ) Pub Date : 2019-12-30 , DOI: 10.1016/j.neunet.2019.12.018
Abbas Siddiqui; Dionysios Georgiadis

Feature maps, that preserve the global topology of arbitrary datasets, can be formed by self-organizing competing agents. So far, it has been presumed that global interaction of agents is necessary for this process. We establish that this is not the case, and that global topology can be uncovered through strictly local interactions. Enforcing uniformity of map quality across all agents results in an algorithm that is able to consistently uncover the global topology of diversely challenging datasets. The applicability and scalability of this approach is further tested on a large point cloud dataset, revealing a linear relation between map training time and size. The presented work not only reduces algorithmic complexity but also constitutes first step towards a distributed self organizing map.
更新日期:2019-12-30

 

全部期刊列表>>
Springer Nature 2019高下载量文章和章节
化学/材料学中国作者研究精选
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
南开大学陈弓课题组招聘启事
中南大学
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug