当前位置: X-MOL 学术Int. Commun. Heat Mass Transf. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enhancing thermal-hydraulic performance of counter flow mini-channel heat sinks utilizing secondary flow: Numerical study with experimental validation
International Communications in Heat and Mass Transfer ( IF 6.4 ) Pub Date : 2020-02-01 , DOI: 10.1016/j.icheatmasstransfer.2019.104447
Amitav Tikadar , Titan C. Paul , Saad K. Oudah , Nabeel M. Abdulrazzaq , Azzam S. Salman , Jamil A. Khan

Abstract Continual growth of hydraulic and thermal boundary layers along stream wise direction in conventional straight fin mini-channel heat sink (MCHS) causes gradual deterioration of their thermal performance. To enhance thermal-hydraulic performance by breaking and re-development of the boundary layers, this research aims to introduce a novel water cooled inter-connected counter flow mini-channel sink (ICMCHS). Two inter-connectors (ICs) were positioned transversely between two counter flow mini-channels (CMCs) which segmented the flow domain into three zones (zone 1–3). Secondary flow was generated through the ICs utilizing the pressure difference of the adjacent CMCs resulting in disruption of the hydraulic and thermal boundary layers. To examine the effect of the ICs location and width on the thermal-hydraulic characteristics of the counter flow mini-channel heat sink (CMCHS), the present numerical studies were carried out for nine different cases (case 1–9) by varying ICs width from 1 mm to 1.5 mm and ICs location from 4 mm to 9 mm. A corresponding conventional CMCHS was chosen as the base case in contrast to the newly proposed ICMCHS. Experiments were also carried out for CMCHS to validate numerical results, and excellent agreement was found between measured values and the corresponding numerical results. At the lowest considered Re (Re = 150), a maximum value of Performance Evaluation Criterion (PEC) was achieved to ~1.22 for the highest length of zone 1 and 3 and the lowest ICs width (case 7), whereas at the highest Re (Re = 1044), the maximum PEC value (~1.42) was recorded for the intermediate length of zone 1 and 3 and the highest ICs width (case 6).

中文翻译:

利用二次流增强逆流微通道散热器的热工水力性能:数值研究与实验验证

摘要 传统直翅式微通道散热器 (MCHS) 中沿流向的水力和热力边界层的持续增长导致其热性能逐渐恶化。为了通过破坏和重新开发边界层来提高热工水力性能,本研究旨在引入一种新型水冷互连逆流微型通道水槽 (ICMCHS)。两个互连器 (IC) 横向放置在两个逆流微型通道 (CMC) 之间,将流域划分为三个区域(区域 1-3)。利用相邻 CMC 的压差,通过 IC 产生二次流,从而破坏水力和热力边界层。为了检查 IC 位置和宽度对逆流微通道散热器 (CMCHS) 的热工水力特性的影响,通过改变 IC 宽度对九种不同情况(案例 1-9)进行了当前数值研究从 1 毫米到 1.5 毫米,IC 位置从 4 毫米到 9 毫米。与新提出的 ICMCHS 相比,相应的传统 CMCHS 被选为基本情况。还对 CMCHS 进行了实验以验证数值结果,并且在测量值和相应的数值结果之间发现了极好的一致性。在考虑的最低 Re (Re = 150) 下,对于区域 1 和 3 的最长长度和最低 IC 宽度(案例 7),性能评估标准 (PEC) 的最大值达到 ~1.22,而在最高 Re (Re = 1044),最大 PEC 值 (~1.
更新日期:2020-02-01
down
wechat
bug