当前位置: X-MOL 学术ACS Sustain. Chem. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Facile Combined Experimental and Computational Study: g-C3N4@PDMS-Assisted Knoevenagel Condensation Reaction under Phase Transfer Conditions
ACS Sustainable Chemistry & Engineering ( IF 7.1 ) Pub Date : 2020-01-13 , DOI: 10.1021/acssuschemeng.9b04082
Priti Sharma 1, 2 , Dinesh K. Patel 1, 3 , Srinivasu Kancharlapalli 4 , Shlomo Magdassi 1 , Yoel Sasson 1
Affiliation  

A new recyclable g-C3N4@PDMS heterogeneous catalyst has been developed as an efficient catalyst with an appreciable reactivity toward Knoevenagel condensation in the presence of crown ether (PTC). Here, a two-dimensional (2D) printed g-C3N4@PDMS heterogeneous catalyst opens the gate of possibility for high mechanical strength with the possibility of an appreciable recyclability. Various performed parameter studies clarify that g-C3N4 active sites exclusively enhance the cinnamic acid synthesis under mild reaction conditions. To explore the molecular mechanism of the condensation reaction over the heterogeneous catalyst surface, a systematic density functional theory-based computational study has been carried out. g-C3N4 material-based model substrate consisting of amine active sites has been considered for modeling the condensation reaction. The reaction energy profile for the condensation reaction between benzaldehyde and para-nitrotoluene on model substrate has been analyzed. The g-C3N4@PDMS catalyst is reused for several runs without loss in reaction rate, evidently due to the g-C3N4 active site being effectively implanted with highly resistant poly(dimethylsiloxane) (PDMS) layer. Recycled g-C3N4@PDMS heterogeneous 2D film characterization studies, viz., X-ray diffraction, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy, confirm that the active site and molecular structure are well preserved even after multiple reaction cycles. Various reactants were screened using the heterogeneous g-C3N4@PDMS catalyst, exhibiting an appreciable product yield (∼99%) at room temperature in a short reaction time of 30 min.

中文翻译:

方便的组合实验和计算研究:相转移条件下gC 3 N 4 @PDMS辅助的Knoevenagel缩合反应

已经开发出一种新的可循环利用的gC 3 N 4 @PDMS多相催化剂,作为一种有效的催化剂,在冠醚(PTC)存在下,它对Knoevenagel缩合反应具有明显的反应性。在此,二维(2D)打印的gC 3 N 4 @PDMS非均相催化剂打开了具有较高机械强度的可能性,并具有可观的可回收性。进行的各种参数研究表明,gC 3 N 4活性位点在温和的反应条件下专门增强肉桂酸的合成。为了探索在非均相催化剂表面上缩合反应的分子机理,已经进行了基于系统密度泛函理论的计算研究。已经考虑了由gC 3 N 4材料为基础的由胺活性位组成的模型底物,用于缩合反应的建模。分析了苯甲醛与硝基甲苯在模型底物上缩合反应的反应能谱。gC 3 N 4 @PDMS催化剂可重复使用数次而不会降低反应速率,这显然是由于gC 3 N 4有效部位有效地植入了高抗性的聚二甲基硅氧烷(PDMS)层。回收的gC 3 N 4 @PDMS异质2D膜表征研究,即X射线衍射,X射线光电子能谱和傅里叶变换红外光谱,证实了即使在多个反应循环后,活性位点和分子结构也得到了很好的保存。使用非均相gC 3 N 4 @PDMS催化剂筛选了各种反应物,在室温下短短30分钟的反应时间内显示出可观的产物收率(〜99%)。
更新日期:2020-01-14
down
wechat
bug