当前位置: X-MOL 学术Environ. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The impact of permafrost on carbon dioxide and methane fluxes in Siberia: A meta-analysis.
Environmental Research ( IF 7.7 ) Pub Date : 2019-12-28 , DOI: 10.1016/j.envres.2019.109096
Oxana V Masyagina 1 , Oleg V Menyailo 1
Affiliation  

There are serious concerns associated with greenhouse gases (GHG) fluxes in high latitude ecosystems and how the permafrost thawing may potentially affect the global climate, through the alteration of carbon (C) dioxide (CO2) and methane (CH4) emissions. We performed a meta-analysis of 3002 observations from 104 published studies on CO2 and CH4 fluxes in Siberia (Russian Federation). Siberia is a vast region characterized by a large C-rich permafrost region, which is already degrading due to escalating climate change, and also large wetland areas, also regarded as a source of CH4. GHG fluxes were strongly controlled by location (Western, Central, Eastern, and Far East Siberia), permafrost presence and season. Maximum CO2 fluxes, in the permafrost zone, were observed in Central and Eastern Siberia. In the non-permafrost zone, maximum CO2 fluxes were found in Western Siberia. According to our analyses, CH4 fluxes in the permafrost zone were significantly different in all parts of Siberia. Thus, permafrost has a more profound effect on CH4 than on CO2 flux. The rank order of increase of CH4 emissions among the various Siberian regions is as follows: Central < Eastern < Western < Far East. In the non-permafrost area, CH4 fluxes in Western Siberia are higher than those in the Central part. Soil temperature was the only significant predictor of soil CO2 flux in the permafrost area. CH4 fluxes were well correlated with temperature and soil water content in the permafrost zone, but only dependent on temperature in the non-permafrost area. In this meta-analysis, we established several statistically significant temporal trends of long-term changes of GHG fluxes over three decades (1984-2017): an increasing trend of soil CO2 fluxes in the non-permafrost area of Western Siberia and a declining trend in the non-permafrost area of Central Siberia. There was also a significant increasing trend of CH4 fluxes in the permafrost area of Eastern Siberia, and its decreasing trend in the non-permafrost area of Western Siberia.

中文翻译:

多年冻土对西伯利亚二氧化碳和甲烷通量的影响:荟萃分析。

高纬度生态系统中的温室气体(GHG)通量以及多年冻土融化如何通过改变二氧化碳(C2)(CO2)和甲烷(CH4)的排放量可能对全球气候造成严重关注。我们对104篇有关西伯利亚(俄罗斯联邦)的CO2和CH4通量的已发表研究进行了3002项观测的荟萃分析。西伯利亚是一个广阔的地区,其特征是富含C的多年冻土地区,由于气候变化的加剧,该地区已经退化,还有大湿地面积,也被视为CH4的来源。温室气体通量受位置(西伯利亚,中西部,东部和远东西伯利亚),多年冻土的存在和季节的强烈控制。在西伯利亚中部和东部观测到了永久冻土带中的最大CO2通量。在非多年冻土区,西伯利亚西部发现最大的CO2通量。根据我们的分析,西伯利亚所有地区的永久冻土带中的CH4通量都存在显着差异。因此,多年冻土对CH4的影响比对CO2通量的影响更大。西伯利亚各地区CH4排放量增加的排名顺序如下:中部<东部<西部<远东。在非多年冻土地区,西西伯利亚的CH4通量高于中部地区。土壤温度是多年冻土区土壤CO2通量的唯一重要预测指标。CH4通量与多年冻土区的温度和土壤含水量密切相关,但仅取决于非多年冻土区的温度。在这项荟萃分析中 我们建立了三个十年(1984-2017)中温室气体通量长期变化的统计上显着的时间趋势:西西伯利亚非多年冻土区土壤CO2通量增加趋势和非多年冻土区下降趋势西伯利亚中部。西伯利亚东部多年冻土地区的CH4通量也有明显增加的趋势,西伯利亚西部非冻土地区的CH4通量也有减少的趋势。
更新日期:2019-12-29
down
wechat
bug