当前位置: X-MOL 学术ChemSusChem › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Molecular Engineering of Fully Conjugated sp2 Carbon‐Linked Polymers for High‐Efficiency Photocatalytic Hydrogen Evolution
ChemSusChem ( IF 7.5 ) Pub Date : 2020-01-21 , DOI: 10.1002/cssc.201903334
Tao Huang 1 , Xi Lin 2 , Yang Liu 1 , Jiwu Zhao 1 , Huan Lin 1 , Ziting Xu 1 , Shuncong Zhong 3 , Chunjie Zhang 4 , Xuxu Wang 1 , Xianzhi Fu 1 , Jinlin Long 1
Affiliation  

The diverse nature of organic precursors offers a versatile platform for precisely tailoring the electronic properties of semiconducting polymers. In this study, three fully conjugated sp2 carbon‐linked polymers have been designed and synthesized for photocatalytic hydrogen evolution under visible‐light illumination, by copolymerizing different C3‐symmetric aromatic aldehydes as knots with the 1,4‐phenylene diacetonitrile (PDAN) linker through a C=C condensation reaction. The hydrogen evolution (HER) is achieved at a maximum rate of 30.2 mmol g−1 h−1 over a polymer based on 2,4,6‐triphenyl‐1,3,5‐triazine units linked by cyano‐substituted phenylene, with an apparent quantum yield (AQY) of 7.20 % at 420 nm. Increasing the degree of conjugation and planarity not only extends visible‐light absorption, but also stabilizes the fully conjugated sp2‐carbon‐linked donor–acceptor (D–A) polymer. Incorporating additional electron‐withdrawing triazine units into the D–A polymer to form multiple electron donors and acceptors can greatly promote exciton separation and charge transfer, thus significantly enhancing the photocatalytic activity.

中文翻译:

全共轭sp2碳键聚合物的分子工程用于高效光催化氢的释放

有机前体的多样性为精确定制半导体聚合物的电子性能提供了一个通用平台。在这项研究中,已经设计并合成了三种完全共轭的sp 2碳连接聚合物,用于通过在可见光照射下将不同的C 3对称芳香醛作为结与1,4-亚苯基二乙腈(PDAN)共聚来合成光催化氢。连接体通过C = C缩合反应。氢气释放(HER)的最大速率为30.2 mmol g -1  h -1在基于2,4,6-三苯基-1,3,5-三嗪单元的氰基取代亚苯基连接的聚合物上,在420 nm下的表观量子产率(AQY)为7.20%。增加共轭度和平面度不仅可以扩展可见光的吸收,还可以稳定完全共轭的sp 2-碳连接的供体-受体(DA)聚合物。将额外的吸电子三嗪单元掺入D–A聚合物中以形成多个电子给体和受体,可以大大促进激子的分离和电荷转移,从而显着增强光催化活性。
更新日期:2020-01-23
down
wechat
bug