当前位置: X-MOL 学术Sens. Actuators A Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Piezoelectromagnetic synergy design and performance analysis for wind galloping energy harvester
Sensors and Actuators A: Physical ( IF 4.1 ) Pub Date : 2019-12-28 , DOI: 10.1016/j.sna.2019.111813
Ting Tan , Xinyu Hu , Zhimiao Yan , Yajian Zou , Wenming Zhang

To improve the performance of the wind galloping energy harvester, the piezoelectromagnetic synergy design is proposed. Hamilton's principle and Euler–Bernoulli beam assumptions, quasi-steady hypothesis, Gauss law and Faraday's law are adopted to establish an electromechanical coupled distributed parameter model for the hybrid energy harvesting system. Using the harmonic balance method, the approximate analytical solutions of the dynamic response and electric output are derived. Wind tunnel experiments validate the nonlinear results of the proposed model including the Hopf bifurcation and unsteady response. The load resistances are optimized via finding the extreme of the power binary function. For the wind speed smaller than the critical wind speed, the piezoelectric module works with switched-off electromagnetic module. For the wind speed larger than the critical wind speed, piezoelectric and electromagnetic modules work concurrently to realize the synergistic effect. The piezoelectromagnetic galloping energy harvester is demonstrated to be superior than the piezoelectric galloping energy harvester and the electromagnetic energy harvester for higher harvested power from smaller galloping oscillations.



中文翻译:

疾驰能量采集器的压电协同设计与性能分析

为了提高疾驰能量采集器的性能,提出了压电电磁协同设计。采用汉密尔顿原理和欧拉-伯努利梁假设,准稳态假设,高斯定律和法拉第定律,建立了混合能量采集系统的机电耦合分布参数模型。使用谐波平衡法,得出了动态响应和电输出的近似解析解。风洞实验验证了所提出模型的非线性结果,包括Hopf分支和不稳定响应。通过找到功率二进制函数的极值来优化负载电阻。对于小于临界风速的风速,压电模块与关闭的电磁模块一起工作。对于大于临界风速的风速,压电和电磁模块同时工作以实现协同作用。压电奔腾能量采集器被证明比压电奔腾能量采集器和电磁能量采集器优越,可以从较小的奔腾振动中获得更高的采集功率。

更新日期:2019-12-28
down
wechat
bug