当前位置: X-MOL 学术Nano Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Efficient Infrared Light Induced CO2 Reduction with Nearly 100% CO Selectivity Enabled by Metallic CoN Porous Atomic Layers
Nano Energy ( IF 16.8 ) Pub Date : 2019-12-28 , DOI: 10.1016/j.nanoen.2019.104421
Liang Liang , Xiaodong Li , Jiachen Zhang , Peiquan Ling , Yongfu Sun , Chengming Wang , Qun Zhang , Yang Pan , Qian Xu , Junfa Zhu , Yi Luo , Yi Xie

Conductors hold promise for applications in infrared-light CO2 reduction to fuels. However, their extremely high carrier densities unfortunately result in strong electron–hole recombination. Herein, an ultrathin conductor with porous structure is designed to prolong the lifetime of photoexcited electrons. Taking the synthetic metallic CoN porous atomic layers as an example, synchrotron-radiation photoelectron spectroscopy and UV-vis-NIR spectroscopy uncover they could realize simultaneous CO2 reduction and H2O oxidation under infrared-light irradiation. Ultrafast transient absorption spectroscopy first unveils the infrared-light excited electrons undergo sequential intraband relaxation and interband recombination processes, where the 9- and 1.6-fold increased time in these two processes verifies the Na2S solution dramatically prolongs the electron lifetime. The metallic CoN porous atomic layers exhibit infrared-light induced CO2 reduction with nearly 100% CO selectivity, while the CO evolution rate is increased by 50 times upon adding Na2S solution. This study affords possibilities for achieving high-efficiency infrared-light driven CO2 reduction performance.



中文翻译:

金属CoN多孔原子层可实现近100%CO选择性的高效红外光诱导的CO 2还原

导体有望在红外光下减少燃料中的CO 2的应用。然而,不幸的是,它们极高的载流子密度导致强烈的电子-空穴复合。在此,设计具有多孔结构的超薄导体以延长光激发电子的寿命。以合成金属CoN多孔原子层为例,同步辐射光电子能谱和紫外可见近红外光谱发现它们可以同时还原CO 2和H 2。O在红外线照射下发生氧化。超快速瞬态吸收光谱法首先揭示了红外光激发的电子经历了连续的带内弛豫和带间重组过程,其中这两个过程中9倍和1.6倍的增加时间证明了Na 2 S解决方案极大地延长了电子寿命。金属CoN多孔原子层表现出红外光诱导的CO 2还原,具有近100%的CO选择性,而加入Na 2 S溶液后,CO的释放速率提高了50倍。这项研究为实现高效红外光驱动的CO 2还原性能提供了可能性。

更新日期:2019-12-29
down
wechat
bug