当前位置: X-MOL 学术J. Microsc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Monte Carlo study for correcting the broadened line‐scan profile in scanning electron microscopy
Journal of Microscopy ( IF 1.5 ) Pub Date : 2020-01-01 , DOI: 10.1111/jmi.12860
P Zhang 1
Affiliation  

Line‐scan profile is always broadened due to the probe shape of the primary electron (PE) beam in scanning electron microscopy (SEM), which leads to an inaccurate dimension metrology. Currently, the effective electron beam shape (EEBS) is suggested as the broadening function to overcome this issue for theoretical analysis, rather than the widely used Gaussian profile. However, EEBS is almost impossible to be acquired due to it strongly depends on both the sample topography and the electron beam focusing condition, which makes it is impossible to be applied in practical analysis. Taking the case of gate linewidth measurement, an approach is proposed to find a best‐fit traditional Gaussian profile, which can optimally replace the EEBS in the case of the same sample structure and experimental condition for construction of a database of the parameter in traditional Gaussian profile. This approach is based on the use of the ideal and broadened line‐scan profiles which are both obtained from Monte Carlo (MC) simulation, but respectively by an ideal and a focusing incident electron beam model. The expected value of parameter can be obtained through deconvoluting (here using a maximum‐entropy algorithm) the broadened line‐scan profile then fitting it to the ideal profile. Experimenters can benefit from this database to obtain true line‐scan profiles for accurate gate linewidth measurement. This work should prove useful for samples of other structures and be an extension of the database in the future.

中文翻译:

用于校正扫描电子显微镜中加宽线扫描轮廓的蒙特卡罗研究

由于扫描电子显微镜 (SEM) 中初级电子 (PE) 束的探针形状,线扫描轮廓总是加宽,这会导致尺寸计量不准确。目前,有效电子束形状 (EEBS) 被建议作为加宽函数来克服这个问题进行理论分析,而不是广泛使用的高斯分布。然而,EEBS 几乎不可能获得,因为它强烈依赖于样品形貌和电子束聚焦条件,这使得它无法应用于实际分析。以栅极线宽测量为例,提出了一种寻找最佳拟合传统高斯分布的方法,可以在相同的样品结构和实验条件下最优替代EEBS,用于构建传统高斯分布参数的数据库。这种方法基于使用理想和加宽的线扫描轮廓,它们都从蒙特卡罗 (MC) 模拟中获得,但分别通过理想和聚焦入射电子束模型获得。参数的期望值可以通过对加宽的线扫描轮廓进行解卷积(这里使用最大熵算法)然后将其拟合到理想轮廓来获得。实验人员可以从该数据库中受益,以获得用于精确栅极线宽测量的真实线扫描轮廓。这项工作应该证明对其他结构的样本很有用,并在未来成为数据库的扩展。这种方法基于使用理想和加宽的线扫描轮廓,它们都从蒙特卡罗 (MC) 模拟中获得,但分别通过理想和聚焦入射电子束模型获得。参数的期望值可以通过对加宽的线扫描轮廓进行解卷积(这里使用最大熵算法)然后将其拟合到理想轮廓来获得。实验人员可以从该数据库中受益,以获得用于精确栅极线宽测量的真实线扫描轮廓。这项工作应该证明对其他结构的样本很有用,并在未来成为数据库的扩展。这种方法基于使用理想和加宽的线扫描轮廓,它们都从蒙特卡罗 (MC) 模拟中获得,但分别通过理想和聚焦入射电子束模型获得。参数的期望值可以通过对加宽的线扫描轮廓进行解卷积(这里使用最大熵算法)然后将其拟合到理想轮廓来获得。实验人员可以从该数据库中受益,以获得用于精确栅极线宽测量的真实线扫描轮廓。这项工作应该证明对其他结构的样本很有用,并在未来成为数据库的扩展。参数的期望值可以通过对加宽的线扫描轮廓进行解卷积(这里使用最大熵算法)然后将其拟合到理想轮廓来获得。实验人员可以从该数据库中受益,以获得用于精确栅极线宽测量的真实线扫描轮廓。这项工作应该证明对其他结构的样本很有用,并在未来成为数据库的扩展。参数的期望值可以通过对加宽的线扫描轮廓进行解卷积(这里使用最大熵算法)然后将其拟合到理想轮廓来获得。实验人员可以从该数据库中受益,以获得用于精确栅极线宽测量的真实线扫描轮廓。这项工作应该证明对其他结构的样本很有用,并在未来成为数据库的扩展。
更新日期:2020-01-01
down
wechat
bug