当前位置: X-MOL 学术Opt. Commun. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Artificial neural network-based threshold detection for OOK-VLC Systems
Optics Communications ( IF 2.2 ) Pub Date : 2020-04-01 , DOI: 10.1016/j.optcom.2019.125107
Mehmet Sönmez

Abstract This paper presents new detection threshold methods to improve the On–Off Keying (OOK) receiver scheme. In the paper, three definitions are discussed considering low-mobility, fast-mobility, and non-mobility scenarios: Integration Method (IM), Artificial Neural Network (ANN) Method-1 and ANN Method-2. For non-mobility scenario, we use IM which has interconnected structure since the receiver uses a test signal to determine the threshold value. In low-mobility case, the ANN Method-1 is very successful compared to ideal system which is completely knows the threshold value. According to simulation results, ANN Method-1 significantly improves Bit Error Rate (BER) performance at a 2.25 m distance. Therefore, the communication distance can be increased from 2.25 m to 2.52 m at a BER of 10−3. Moreover, we think that the received optical power can suddenly change depend to dimming level for simulation and practical environments. The ANN Method-1 cannot detect the threshold value when the percent deviation of threshold level is higher than 100%. In order to solve this problem, ANN Method-2 is proposed in the paper. From simulation and practical results, it is shown that ANN method-2 is successfully detects the threshold value from received signal for 200% or more deviation. The proposed methods are designed on Field Programmable Gate Arrays (FPGA) board to observe real-time results. From simulation and practical results, it is shown that BER performance of ANN Method-2 is very close to BER performance of ideal receiver scheme.

中文翻译:

基于人工神经网络的 OOK-VLC 系统阈值检测

摘要 本文提出了新的检测阈值方法来改进开关键控 (OOK) 接收器方案。在本文中,考虑到低移动性、快速移动性和非移动性场景,讨论了三种定义:集成方法 (IM)、人工神经网络 (ANN) 方法 1 和 ANN 方法 2。对于非移动场景,我们使用具有互连结构的 IM,因为接收器使用测试信号来确定阈值。在低移动性的情况下,与完全知道阈值的理想系统相比,ANN Method-1 非常成功。根据仿真结果,ANN 方法 1 显着提高了 2.25 m 距离处的误码率 (BER) 性能。因此,在 10-3 的 BER 下,通信距离可以从 2.25 m 增加到 2.52 m。而且,我们认为接收到的光功率可能会突然变化,这取决于模拟和实际环境的调光水平。当阈值水平的百分比偏差高于 100% 时,ANN 方法 1 无法检测阈值。为了解决这个问题,论文中提出了ANN方法2。从仿真和实际结果来看,ANN方法2成功地从接收信号中检测到200%或更多偏差的阈值。所提出的方法是在现场可编程门阵列 (FPGA) 板上设计的,以观察实时结果。从仿真和实际结果来看,ANN Method-2的BER性能非常接近理想接收机方案的BER性能。当阈值水平的百分比偏差高于 100% 时,ANN 方法 1 无法检测阈值。为了解决这个问题,论文中提出了ANN方法2。从仿真和实际结果来看,ANN方法2成功地从接收信号中检测到200%或更多偏差的阈值。所提出的方法是在现场可编程门阵列 (FPGA) 板上设计的,以观察实时结果。从仿真和实际结果来看,ANN Method-2的BER性能非常接近理想接收机方案的BER性能。当阈值水平的百分比偏差高于 100% 时,ANN 方法 1 无法检测阈值。为了解决这个问题,论文中提出了ANN方法2。从仿真和实际结果来看,ANN方法2成功地从接收信号中检测到200%或更多偏差的阈值。所提出的方法是在现场可编程门阵列 (FPGA) 板上设计的,以观察实时结果。从仿真和实际结果来看,ANN Method-2的BER性能非常接近理想接收机方案的BER性能。结果表明,ANN 方法 2 成功地从接收到的信号中检测了 200% 或更多偏差的阈值。所提出的方法是在现场可编程门阵列 (FPGA) 板上设计的,以观察实时结果。从仿真和实际结果来看,ANN Method-2的BER性能非常接近理想接收机方案的BER性能。结果表明,ANN 方法 2 成功地从接收到的信号中检测了 200% 或更多偏差的阈值。所提出的方法是在现场可编程门阵列 (FPGA) 板上设计的,以观察实时结果。从仿真和实际结果来看,ANN Method-2的BER性能非常接近理想接收机方案的BER性能。
更新日期:2020-04-01
down
wechat
bug