当前位置: X-MOL 学术Comput. Phys. Commun. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Fast, flexible particle simulations — An introduction to MercuryDPM
Computer Physics Communications ( IF 7.2 ) Pub Date : 2020-04-01 , DOI: 10.1016/j.cpc.2019.107129
Thomas Weinhart , Luca Orefice , Mitchel Post , Marnix P. van Schrojenstein Lantman , Irana F.C. Denissen , Deepak R. Tunuguntla , J.M.F. Tsang , Hongyang Cheng , Mohamad Yousef Shaheen , Hao Shi , Paolo Rapino , Elena Grannonio , Nunzio Losacco , Joao Barbosa , Lu Jing , Juan E. Alvarez Naranjo , Sudeshna Roy , Wouter K. den Otter , Anthony R. Thornton

Abstract We introduce the open-source package MercuryDPM, which we have been developing over the last few years. MercuryDPM is a code for discrete particle simulations. It simulates the motion of particles by applying forces and torques that stem either from external body forces, (gravity, magnetic fields, etc.) or particle interactions. The code has been developed extensively for granular applications, and in this case these are typically (elastic, plastic, viscous, frictional) contact forces or (adhesive) short-range forces. However, it could be adapted to include long-range (molecular, self-gravity) interactions as well. MercuryDPM is an object-oriented algorithm with an easy-to-use user interface and a flexible core, allowing developers to quickly add new features. It is parallelised using MPI and released under the BSD 3-clause licence. Its open-source developers’ community has developed many features, including moving and curved walls; state-of-the-art granular contact models; specialised classes for common geometries; non-spherical particles; general interfaces; restarting; visualisation; a large self-test suite; extensive documentation; and numerous tutorials and demos. In addition, MercuryDPM has three major components that were originally invented and developed by its team: an advanced contact detection method, which allows for the first time large simulations with wide size distributions; curved (non-triangulated) walls; and multicomponent, spatial and temporal coarse-graining, a novel way to extract continuum fields from discrete particle systems. We illustrate these tools and a selection of other MercuryDPM features via various applications, including size-driven segregation down inclined planes, rotating drums, and dosing silos. Program summary Program Title: MercuryDPM Program Files doi: http://dx.doi.org/10.17632/n7jmdrdc52.1 Licensing provisions: BSD 3-Clause Programming language: C++, Fortran Supplementary material: http://mercurydpm.org Nature of problem: Simulation of granular materials, i.e. conglomerations of discrete, macroscopic particles. The interaction between individual grains is characterised by a loss of energy, making the behaviour of granular materials distinct from atomistic materials, i.e. solids, liquids and gases. Solution method: MercuryDPM (Thornton et al., 2013, 2019; Weinhart et al., 2016, 2017, 2019) is an implementation of the Discrete Particle Method (DPM), also known as the Discrete Element Method (DEM) (Cundall and Strack, 1979). It simulates the motion of individual particles by applying forces and torques that stem either from external forces (gravity, magnetic fields, etc.) or from particle-pair and particle–wall interactions (typically elastic, plastic, dissipative, frictional, and adhesive contact forces). DPM simulations have been successfully used to understand the many unique granular phenomena – sudden phase transitions, jamming, force localisation, etc. – that cannot be explained without considering the granular microstructure. Unusual features: MercuryDPM was designed ab initio with the aim of allowing the simulation of realistic geometries and materials found in industrial and geotechnical applications. It thus contains several bespoke features invented by the MercuryDPM team: (i) a neighbourhood detection algorithm (Krijgsman et al., 2014) that can efficiently simulate highly polydisperse packings, which are common in industry; (ii) curved walls (Weinhart et al., 2016) making it possible to model real industrial geometries exactly, without triangulation errors; and (iii) MercuryCG (Weinhart et al., 2012, 2013, 2016; Tunuguntla et al., 2016), a state-of-the-art analysis tool that extracts local continuum fields, providing accurate analytical/rheological information often not available from experiments or pilot plants. It further contains a large range of contact models to simulate complex interactions such as elasto-plastic deformation (Luding, 2008), sintering (Fuchs et al., 2017), melting (Weinhart et al., 2019), breaking, wet and dry cohesion (Roy et al., 2016, 2017), and liquid migration (Roy et al., 2018), all of which have important industrial applications.

中文翻译:

快速、灵活的粒子模拟——MercuryDPM 简介

摘要 我们介绍了我们在过去几年中一直在开发的开源软件包 MercuryDPM。MercuryDPM 是离散粒子模拟的代码。它通过施加源于外力(重力、磁场等)或粒子相互作用的力和扭矩来模拟粒子的运动。该代码已广泛用于颗粒应用,在这种情况下,这些通常是(弹性、塑性、粘性、摩擦)接触力或(粘附)短程力。然而,它也可以适用于包括长距离(分子、自引力)相互作用。MercuryDPM 是一种面向对象的算法,具有易于使用的用户界面和灵活的内核,允许开发人员快速添加新功能。它使用 MPI 并行化并在 BSD 3-clause 许可下发布。它的开源开发者社区开发了许多功能,包括移动和弯曲的墙壁;最先进的颗粒接触模型;常见几何形状的专业课程;非球形颗粒;通用接口;重新启动;可视化;大型自测套件;广泛的文件;以及大量的教程和演示。此外,MercuryDPM 具有三个由其团队最初发明和开发的主要组件:先进的接触检测方法,它首次允许具有广泛尺寸分布的大型模拟;弯曲(非三角)墙;和多分量、空间和时间粗粒度,一种从离散粒子系统中提取连续域的新方法。我们通过各种应用程序说明这些工具和其他 MercuryDPM 功能的选择,包括尺寸驱动的沿斜面分离、转鼓和计量筒仓。程序摘要 程序名称:MercuryDPM 程序文件 doi:http://dx.doi.org/10.17632/n7jmdrdc52.1 许可条款:BSD 3-Clause 编程语言:C++、Fortran 补充材料:http://mercurydpm.org 性质问题:颗粒材料的模拟,即离散的宏观颗粒的聚集。单个颗粒之间的相互作用以能量损失为特征,这使得颗粒材料的行为不同于原子材料,即固体、液体和气体。求解方法:MercuryDPM(Thornton et al., 2013, 2019; Weinhart et al., 2016, 2017, 2019)是离散粒子法(DPM)的一种实现,也称为离散元法(DEM)(Cundall and斯特拉克,1979 年)。它通过施加源于外力(重力、磁场等)或源于颗粒对和颗粒壁相互作用(通常是弹性、塑性、耗散、摩擦和粘附接触)的力和扭矩来模拟单个颗粒的运动势力)。DPM 模拟已成功用于理解许多独特的粒状现象——突然相变、干扰、力局部化等——如果不考虑粒状微观结构就无法解释。不寻常的功能:MercuryDPM 从头开始​​设计,旨在模拟工业和岩土工程应用中的真实几何形状和材料。因此,它包含由 MercuryDPM 团队发明的几个定制功能:(i)邻域检测算法(Krijgsman 等人,2014) 可以有效模拟工业中常见的高度多分散填料;(ii) 弯曲的墙壁(Weinhart 等人,2016 年)可以准确地模拟真实的工业几何形状,而不会出现三角测量错误;(iii) MercuryCG (Weinhart et al., 2012, 2013, 2016; Tunuguntla et al., 2016),一种最先进的分析工具,可提取局部连续场,提供通常无法获得的准确分析/流变信息来自实验或中试工厂。它还包含大量接触模型来模拟复杂的相互作用,例如弹塑性变形 (Luding, 2008)、烧结 (Fuchs et al., 2017)、熔化 (Weinhart et al., 2019)、断裂、潮湿和干燥凝聚力(Roy 等人,2016 年,2017 年)和液体迁移(Roy 等人,2018 年),所有这些都具有重要的工业应用。
更新日期:2020-04-01
down
wechat
bug