当前位置: X-MOL 学术Sol. Energy › 论文详情
A shallow cross-flow fluidized-bed solar reactor for continuous calcination processes
Solar Energy ( IF 4.674 ) Pub Date : 2019-12-21 , DOI: 10.1016/j.solener.2019.12.029
Thibaut Esence; Hadrien Benoit; Damien Poncin; Michael Tessonneaud; Gilles Flamant

A laboratory-scale solar reactor prototype dedicated to calcination processes of non-metallic mineral particles is tested and characterized. The prototype consists of an indirect heating shallow cross-flow fluidized-bed reactor-receiver. It is composed of 4 compartments in series in which the particles are thermally treated with solar power in order to drive the endothermic calcination reaction. The particles are fluidized in the reactor with preheated air and are heated up to 800 °C through the front wall of the reactor receiving the concentrated solar flux (about 200 kW/m2). The tests are carried out at the 1-MW Odeillo’s solar furnace (France). The thermal decomposition of a continuous stream of 9.4 kg/h of dolomite (CaMg(CO3)2) is investigated in this paper. The half decomposition of dolomite (CaMg(CO3)2 → CaCO3 + MgO + CO2) is performed with a degree of conversion of 100%. The complete decomposition of dolomite (CaMg(CO3)2 → CaO + MgO + 2CO2) is not reached because, with respect to the CO2 partial pressure in the reactor, the temperature of particles is not high enough to decompose the calcium carbonate. The calculated thermochemical efficiency (i.e. the energy absorbed by the endothermic calcination reaction compared to the solar energy provided to the system) is 6.6%. This low efficiency is neither surprising nor critical since the reactor design was not optimised with respect to energy efficiency but designed to the control of particle flow and front wall solar flux distribution. A numerical model considering the 4 compartments of the reactor as 4 ideal continuous stirred tank reactors in series is developed. The model accounts for the mass and the energy balances, as well as the reaction kinetics of the half decomposition of dolomite. The model gives consistent results compared to the experimental data. These results are a proof of concept of continuous calcination reaction using concentrated solar energy in a cross-flow fluidized-bed reactor.
更新日期:2019-12-27

 

全部期刊列表>>
Springer Nature 2019高下载量文章和章节
化学/材料学中国作者研究精选
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
南开大学陈弓课题组招聘启事
中南大学
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug