当前位置: X-MOL 学术ChemElectroChem › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Design ultra‐microporous carbons with pore size of 0.6 nm dominant by interpenetrating MF prepolymer into PAAS networks at molecule level for enhanced electrochemical performances
ChemElectroChem ( IF 3.5 ) Pub Date : 2019-12-25 , DOI: 10.1002/celc.201901942
Yan‐Dong Ma 1 , Jian‐Fei Gao 1 , Xi‐Wen Chen 1 , Ling‐Bin Kong 1, 2
Affiliation  

The pore structure control of porous carbons, especially ultra‐microporous carbons, has long been a great challenge, and it is desirable to propose new strategies to deal with this dilemma. Herein, we designed and obtained ultra‐microporous dominant porous carbon materials (UMC‐IPNs) with an unimodal pore diameter of 0.6 nm by the strategy of interpenetrating polymer networks precursor carbonization. Thanks to the intertwining characteristics of the two interpenetrating polymer networks, the microphase separation which often occurs between the polymers is well suppressed, and also the pores of the as‐obtained ultra‐microporous carbons are interconnected. The calculated specific surface area is 1551 m2 g‐1. Furthermore, as electrode material, UMC‐IPNs has been confirmed to have exceptional electrochemical performance (the specific capacitance is 268 F g‐1 at 0.5 A g‐1, and after 10,000 cycles, the capacity is 96% of the original at 6 A g‐1) and rapid electrochemical kinetics (the surface capacitance effect ratio is about 85.4% in our calculation results). In addition, ultra‐microporous carbons are interesting for other applications such as gas capture, catalyze, and sensor technology.

中文翻译:

通过在分子水平上将MF预聚物互穿入PAAS网络中,设计主孔尺寸为0.6 nm的超微孔碳,以增强电化学性能

长期以来,多孔碳,尤其是超微孔碳的孔结构控制一直是一个巨大的挑战,因此,提出解决这一难题的新策略是可取的。本文中,我们通过互穿聚合物网络前体碳化的策略,设计并获得了具有0.6 nm单峰孔径的超微孔显性多孔碳材料(UMC-IPNs)。由于两个互穿聚合物网络的相互缠绕的特性,聚合物之间经常发生的微相分离得到了很好的抑制,而且所获得的超微孔碳的孔也相互连接。计算出的比表面积为1551 m2 g-1。此外,作为电极材料 UMC-IPNs已被证实具有出色的电化学性能(0.5 A g-1时的比电容为268 F g-1,并且经过10,000次循环后,容量为6 A g-1时的原始电容的96%)并且快速电化学动力学(在我们的计算结果中,表面电容效应比约为85.4%)。此外,超微孔碳对于气体捕获,催化和传感器技术等其他应用也很有趣。
更新日期:2019-12-27
down
wechat
bug