当前位置: X-MOL 学术Desalination › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Fe3O4/PVDF-HFP photothermal membrane with in-situ heating for sustainable, stable and efficient pilot-scale solar-driven membrane distillation
Desalination ( IF 8.3 ) Pub Date : 2020-03-01 , DOI: 10.1016/j.desal.2019.114288
Wenpeng Li , Yiqing Chen , Lei Yao , Xiangzhong Ren , Yongliang Li , Libo Deng

Abstract Solar-driven membrane distillation (SDMD) is a newly developed desalination technique with promising potential to address the global shortage of freshwater resources. However, this technique still suffers from tedious and high cost synthesis process for the photothermal composite membrane, and low conversion efficiencies for photothermal energy. Herein, we prepared a Fe3O4/polyvinylidene fluoride-co-hexafluoropropylene (Fe3O4/PVDF-HFP) absorber by vacuum-assisted filtration, which exhibited strong interfacial adhesion due to coordination between Fe3O4 nanoparticles and PVDF-HFP nanofibers, thus showing excellent performance for SDMD. Benefiting from the excellent absorption of solar energy by Fe3O4 nanoparticles and the high porosity of Fe3O4/PVDF-HFP membrane, the transmembrane temperature was increased and the transmembrane resistance of vapor was reduced significantly. The photothermal membrane showed a permeate flux of 0.97 kg m−2 h−1 with a salt rejection rate of 99.99% under 1 kW m−2 solar irradiation, and the photothermal conversion efficiency is among the highest (53%) reported so far. Furthermore, such a composite membrane worked stably in a pilot-scale system and demonstrated a 21.99 kg m−2 h−1 which is 11% higher than the solar-free system, thus manifesting its great prospect for practical applications.

中文翻译:

Fe3O4/PVDF-HFP 光热膜与原位加热可持续、稳定和高效的中试太阳能驱动膜蒸馏

摘要 太阳能驱动膜蒸馏(SDMD)是一种新开发的海水淡化技术,具有解决全球淡水资源短缺问题的潜力。然而,该技术仍存在光热复合膜合成工艺繁琐、成本高、光热能转化效率低等问题。在此,我们通过真空辅助过滤制备了 Fe3O4/聚偏二氟乙烯-共六氟丙烯 (Fe3O4/PVDF-HFP) 吸收剂,由于 Fe3O4 纳米粒子和 PVDF-HFP 纳米纤维之间的配位,该吸收剂表现出很强的界面粘附性,从而表现出优异的 SDMD 性能. 得益于 Fe3O4 纳米粒子对太阳能的出色吸收和 Fe3O4/PVDF-HFP 膜的高孔隙率,跨膜温度升高,蒸气跨膜阻力显着降低。该光热膜在 1 kW m-2 太阳辐射下的渗透通量为 0.97 kg m-2 h-1,脱盐率为 99.99%,光热转换效率是迄今为止报道的最高(53%)之一。此外,这种复合膜在中试规模系统中工作稳定,表现出 21.99 kg m-2 h-1,比无太阳能系统高 11%,显示出其巨大的实际应用前景。
更新日期:2020-03-01
down
wechat
bug