当前位置: X-MOL 学术Acta Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The curious mechanism of irradiation-induced cryogenic grain growth in tungsten thin films: a pathway to single crystals
Acta Materialia ( IF 8.3 ) Pub Date : 2020-04-01 , DOI: 10.1016/j.actamat.2019.12.042
Huan Ma , Alla S. Sologubenko , Max Döbeli , Kay Sanvito , Alex Heusi , Kaj Pletscher , Ralph Spolenak

Abstract With high resistance against interdiffusion, electromigration, creep and fatigue, single-crystal films of refractory metals are highly desired for applications in opto- and micro-electronic devices. Their fabrication is nevertheless very challenging, primarily due to their high melting points. Requiring no external thermal input, ion-irradiation presents an alternative route for single-crystal films by converting from their polycrystalline counterparts through irradiation-induced selective grain growth. The incomplete poly- to single-crystal conversion is however a common problem which limits the application of this method. Here we use refractory W thin films, the element with the highest melting point, as a model system. We systematically investigate the influences of film microstructure (texture and grain size) and irradiation temperature (77 K and room temperature) on the evolution of selective grain growth under 4.5 MeV Au+ ion-irradiation. We find that the driving force for selective grain growth can be increased by narrowing the texture spread of the films, refining the grain size and decreasing the irradiation temperature. Following this guidance, a complete conversion of a polycrystalline W film into a single crystal is achieved. This study therefore provides insights into the mechanism of selective grain growth and proves that it is an effective technique for microstructure engineering in thin film materials. The concepts can be applied to all crystalline metal films.

中文翻译:

钨薄膜中辐照诱导低温晶粒生长的奇怪机制:通往单晶的途径

摘要 难熔金属单晶薄膜对相互扩散、电迁移、蠕变和疲劳具有很高的抵抗力,因此在光电和微电子器件中得到了广泛的应用。然而,它们的制造非常具有挑战性,主要是由于它们的高熔点。不需要外部热输入,离子辐射通过辐射诱导的选择性晶粒生长从多晶对应物转化为单晶薄膜的替代途径。然而,不完全的多晶到单晶转化是限制该方法应用的常见问题。在这里,我们使用具有最高熔点的元素耐火 W 薄膜作为模型系统。我们系统地研究了薄膜微观结构(纹理和晶粒尺寸)和辐照温度(77 K 和室温)对 4.5 MeV Au+ 离子辐照下选择性晶粒生长演变的影响。我们发现通过缩小薄膜的织构扩展、细化晶粒尺寸和降低辐照温度可以增加选择性晶粒生长的驱动力。按照这个指导,多晶 W 薄膜完全转化为单晶。因此,这项研究提供了对选择性晶粒生长机制的深入了解,并证明它是一种有效的薄膜材料微结构工程技术。这些概念可以应用于所有结晶金属薄膜。5 MeV Au+ 离子辐照。我们发现可以通过缩小薄膜的织构扩展、细化晶粒尺寸和降低辐照温度来增加选择性晶粒生长的驱动力。按照这个指导,多晶 W 薄膜完全转化为单晶。因此,这项研究提供了对选择性晶粒生长机制的深入了解,并证明它是一种有效的薄膜材料微结构工程技术。这些概念可以应用于所有结晶金属薄膜。5 MeV Au+ 离子辐照。我们发现通过缩小薄膜的织构扩展、细化晶粒尺寸和降低辐照温度可以增加选择性晶粒生长的驱动力。按照这个指导,多晶 W 薄膜完全转化为单晶。因此,这项研究提供了对选择性晶粒生长机制的见解,并证明它是薄膜材料微结构工程的有效技术。这些概念可以应用于所有结晶金属薄膜。实现了多晶 W 膜到单晶的完全转化。因此,这项研究提供了对选择性晶粒生长机制的深入了解,并证明它是一种有效的薄膜材料微结构工程技术。这些概念可以应用于所有结晶金属薄膜。实现了多晶 W 膜到单晶的完全转化。因此,这项研究提供了对选择性晶粒生长机制的深入了解,并证明它是一种有效的薄膜材料微结构工程技术。这些概念可以应用于所有结晶金属薄膜。
更新日期:2020-04-01
down
wechat
bug