当前位置: X-MOL 学术Int. Commun. Heat Mass Transf. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Numerical simulation of aggregation effect on nanofluids thermal conductivity using the lattice Boltzmann method
International Communications in Heat and Mass Transfer ( IF 6.4 ) Pub Date : 2020-01-01 , DOI: 10.1016/j.icheatmasstransfer.2019.104408
Hamed Tahmooressi , Alibakhsh Kasaeian , Ali Tarokh , Roya Rezaei , Mina Hoorfar

Abstract The standard enhancement in nanofluids thermal conductivity due to the addition of nanoparticles is well understood. Despite this, the reason behind observed anomalous increases is still controversial. Limitations in nano-scale experimental observations would make it even harder to approach into this topic. To address this issue, researchers have proposed many different macroscopic (continuum-based)/microscopic (molecular scale) numerical schemes as an alternative for experimental investigations. However, the overall thermal effect of suspended nano-scale particles cannot be observed in neither macroscopic nor microscopic scale due to collective interrelated behaviors such as nanoparticles aggregation. In this paper, a mesoscopic approach, Lattice Boltzmann method (LBM), aims to consider microscopic phenomena in a broader context (mesoscopic scale), been implemented to investigate the nanoparticles aggregation as a probable working mechanism behind the anomalous increase in nanofluids thermal conductivity. The stochastic and dynamic nature of nanoparticles aggregation is captured through generation of fractal random microstructures. The effects of size, shape and distribution regime of aggregates are studied and optimum values are calculated. The results indicate that the aggregation can anomalously enhance nanofluids effective thermal conductivity (ETC). The LBM results are found to be in great agreement with the available numerical/experimental data in the literature.

中文翻译:

使用格子 Boltzmann 方法对纳米流体热导率的聚集效应进行数值模拟

摘要 由于添加纳米颗粒,纳米流体热导率的标准增强是众所周知的。尽管如此,观察到的异常增加背后的原因仍然存在争议。纳米级实验观察的局限性会使研究这个话题变得更加困难。为了解决这个问题,研究人员提出了许多不同的宏观(基于连续体)/微观(分子尺度)数值方案作为实验研究的替代方案。然而,由于纳米颗粒聚集等集体相关行为,在宏观和微观尺度上都无法观察到悬浮纳米颗粒的整体热效应。在本文中,一种细观方法,格子玻尔兹曼方法(LBM),旨在在更广泛的背景下(介观尺度)考虑微观现象,已实施以研究纳米颗粒聚集作为纳米流体热导率异常增加背后的可能工作机制。纳米颗粒聚集的随机和动态特性是通过生成分形随机微结构来捕获的。研究了聚集体的尺寸、形状和分布方式的影响并计算了最佳值。结果表明,聚集可以异常地提高纳米流体的有效热导率(ETC)。发现 LBM 结果与文献中可用的数值/实验数据非常一致。已实施以研究纳米颗粒聚集作为纳米流体热导率异常增加背后的可能工作机制。纳米颗粒聚集的随机和动态特性是通过生成分形随机微结构来捕获的。研究了聚集体的尺寸、形状和分布方式的影响并计算了最佳值。结果表明,聚集可以异常地提高纳米流体的有效热导率(ETC)。发现 LBM 结果与文献中可用的数值/实验数据非常一致。已实施以研究纳米颗粒聚集作为纳米流体热导率异常增加背后的可能工作机制。纳米颗粒聚集的随机和动态特性是通过生成分形随机微结构来捕获的。研究了聚集体的尺寸、形状和分布方式的影响并计算了最佳值。结果表明,聚集可以异常地提高纳米流体的有效热导率(ETC)。发现 LBM 结果与文献中可用的数值/实验数据非常一致。研究了骨料的形状和分布方式,并计算了最佳值。结果表明,聚集可以异常地提高纳米流体的有效热导率(ETC)。发现 LBM 结果与文献中可用的数值/实验数据非常一致。研究了骨料的形状和分布方式,并计算了最佳值。结果表明,聚集可以异常地提高纳米流体的有效热导率(ETC)。发现 LBM 结果与文献中可用的数值/实验数据非常一致。
更新日期:2020-01-01
down
wechat
bug