当前位置: X-MOL 学术J. Energy Storage › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Renewable low cost green functional mesoporous electrodes from Solanum lycopersicum leaves for supercapacitors
Journal of Energy Storage ( IF 9.4 ) Pub Date : 2019-12-24 , DOI: 10.1016/j.est.2019.101149
P. Divya , R. Rajalakshmi

In this present investigation, functional (conducting) carbon were synthesized by direct pyrolysis method followed by carbonization process from the dead plant leaves of Solanum lycopersicum (SLL)without any external activation and applied for the energy storage system of supercapacitors. This technique is very simple and applicable to most of the dried forms of biomass. The synthesized functional carbon were characterized by X-ray diffraction (XRD), Energy-dispersive X-ray spectroscopy (EDS), Raman spectroscopy (RAMAN), Fourier-transform infrared spectroscopy (FTIR), Brunauer–Emmett–Teller (BET), Field Emission Scanning Microscopy (FE-SEM) and Transmission electron microscope (TEM) techniques. The synthesized functional carbon electrode materials of SLL were also tested by cyclic voltammetry (CV), galvanostatic charge and discharge (CD), Impedance analysis in aqueous electrolyte (1 M H2SO4) and cycle stability test. By using three-electrode systems, the electrode material of SLL-1000 shows best capacitance performance of 345 F/g when compared to other samples of dried SLL −600 and 800. The dried leaves of SLL-1000 based supercapacitor exhibits high 43.13 Wh/kg (energy density) at 61.34 W/kg (power density) in 1 M H2SO4.From the results, it highlights the success of preparing high capacitance electrode materials from functional carbon which are micro or mesoporous synthesized from SLL as a raw material for supercapacitors application.



中文翻译:

叶的可更新低成本绿色功能介孔电极,用于超级电容器

在这项研究中,功能性(导电)碳是通过直接热解法然后从碳化的死植物叶片中进行碳化过程而合成的。(SLL)无需任何外部激活即可用于超级电容器的储能系统。该技术非常简单,适用于大多数干燥形式的生物质。合成的功能碳通过X射线衍射(XRD),能量色散X射线光谱(EDS),拉曼光谱(RAMAN),傅里叶变换红外光谱(FTIR),Brunauer–Emmett–Teller(BET)进行了表征,场发射扫描显微镜(FE-SEM)和透射电子显微镜(TEM)技术。还通过循环伏安法(CV),恒电流充放电(CD),水性电解质(1 MH 2 SO 4)中的阻抗分析测试了SLL的合成功能碳电极材料)和循环稳定性测试。通过使用三电极系统,与干燥的SLL -600和800的其他样品相比,SLL-1000的电极材料显示出345 F / g的最佳电容性能。基于SLL-1000的超级电容器的干燥叶片显示出高43.13 Wh /在1 MH 2 SO 4中以61.34 W / kg(功率密度)时的kg(能量密度)。从结果来看,它突出表明了以功能性碳为原料制备的高电容电极材料的成功,这些功能性碳是由SLL作为原料合成的微孔或中孔适用于超级电容器应用。

更新日期:2019-12-24
down
wechat
bug