当前位置: X-MOL 学术Chin. J. Catal. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Fabrication of hierarchical ZnIn2S4@CNO nanosheets for photocatalytic hydrogen production and CO2 photoreduction
Chinese Journal of Catalysis ( IF 15.7 ) Pub Date : 2020-03-01 , DOI: 10.1016/s1872-2067(19)63494-7
Kai Zhu , Jie Ou-Yang , Qian Zeng , Sugang Meng , Wei Teng , Yanhua Song , Sheng Tang , Yanjuan Cui

Abstract Photocatalytic H2 production and CO2 reduction have attracted considerable attention for clean energy development. In this work, we designed an efficient photocatalyst by integrating lamellar oxygen-doped carbon nitride (CNO) nanosheets into ZnIn2S4 (ZIS) microflowers by a one-step hydrothermal method. A well-fitted 2D hierarchical hybrid heterostructure was fabricated. Under visible light irradiation, the ZIS@CNO composite with 40 wt% CNO (ZC 40%) showed the highest hydrogen evolution rate from water (188.4 μmol·h−1), which was approximately 2.1 times higher than those of CNO and ZIS (88.6 and 90.2 μmol·h−1, respectively). Furthermore, the selective CO production rates of ZC 40% (12.69 μmol·h−1) were 2.2 and 14.0 times higher than those of ZIS (5.85 μmol·h−1) and CNO (0.91 μmol·h−1), respectively, and the CH4 production rate of ZC 40% was 1.18 μmol·h−1. This enhanced photocatalytic activity of CNO@ZIS is due mainly to the formation of a heterostructure that can promote the transfer of photoinduced electrons and holes between CNO and ZIS, thereby efficiently avoiding recombination of electron-hole pairs.

中文翻译:

用于光催化制氢和 CO2 光还原的分级 ZnIn2S4@CNO 纳米片的制备

摘要 光催化制氢和CO2 还原在清洁能源发展中引起了广泛关注。在这项工作中,我们通过一步水热法将层状氧掺杂氮化碳 (CNO) 纳米片集成到 ZnIn2S4 (ZIS) 微花中,设计了一种高效的光催化剂。制造了一个拟合良好的二维分层混合异质结构。在可见光照射下,含有 40 wt% CNO(ZC 40%)的 ZIS@CNO 复合材料显示出最高的水析氢速率(188.4 μmol·h-1),是 CNO 和 ZIS 的约 2.1 倍( 88.6 和 90.2 μmol·h-1)。此外,ZC 40% (12.69 μmol·h-1) 的选择性 CO 产率分别是 ZIS (5.85 μmol·h-1) 和 CNO (0.91 μmol·h-1) 的 2.2 倍和 14.0 倍,ZC 40%的CH4产率为1.18 μmol·h-1。CNO@ZIS 光催化活性的增强主要是由于形成了异质结构,可以促进光生电子和空穴在 CNO 和 ZIS 之间的转移,从而有效避免电子-空穴对的复合。
更新日期:2020-03-01
down
wechat
bug