当前位置: X-MOL 学术Biomass Bioenergy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Biogas optimisation processes and effluent quality: A review
Biomass & Bioenergy ( IF 5.8 ) Pub Date : 2019-12-23 , DOI: 10.1016/j.biombioe.2019.105449
Abdul-Aziz Issah , Telesphore Kabera , Francis Kemausuor

Since the first use of anaerobic digestion technology to generate biogas in 1895 to power street lights in Britain and also as a Municipal Solid Waste Management technique in the US in 1939, significant advances have been developed to optimise the process in a sustainable manner. In practice, optimising anaerobic digesters to increase biogas production dependent on a balanced pH (neutral), tolerable volatile fatty acids and alkalinity levels by anaerobic bacteria. Others include maintaining suitable temperature regime, providing suitable organic loading rate to prevent noxious conditions, well-balanced carbon to nitrogen ratio to limit ammonia build-up and appropriate choice of substrates. In terms of biomass, lignocellulose substrates constitute the most abundant bio-resource. This resource however requires modification of the chemistry of the structure to improve its biodegradation, biogas production and effluent quality. There have been attempts by most researchers to improve lignocellulose biomass utilization in anaerobic digesters through delignification to prevent non-productive binding of bacteria as well as reduce the crystalline in cellulose with the aim of making the holocellulose fractions bioavailable. However, none of the techniques so far applied for the purpose of optimising biogas production has attained the maximum theoretical biogas yield of 120,000–650,000 L t−1. Techniques frequently applied include among others; pretreatment (chemical, biological, physical or their combinations), co-digestion, application of inoculum or bio-augmentation, and supplementing anaerobic digesters with micronutrients and nanoparticles. This review thus highlights research findings from authors in relation to factors influencing effective degradation of lignin based biomass in other to ascertain the best possible strategies to scale up the process.



中文翻译:

沼气优化流程和废水质量:综述

自从1895年首次使用厌氧消化技术产生沼气为英国的路灯供电以来​​,1939年在美国作为市政固体废物管理技术以来,已经取得了重大进展,以可持续的方式优化了该工艺。在实践中,优化厌氧消化池以提高沼气产量,取决于平衡的pH(中性),可耐受的挥发性脂肪酸和厌氧细菌的碱度。其他包括保持合适的温度状况,从而提供合适的有机负荷率,以防止有害的条件下,良好平衡的碳氮比,以限制氨积聚和底物的合适的选择。就生物量而言,木质纤维素底物构成了最丰富的生物资源。然而,这种资源需要改变结构的化学性质以改善其生物降解,沼气生产和废水质量。大多数研究者已经尝试通过脱木素作用来改善厌氧消化池中木质纤维素生物质的利用,以防止细菌的非生产性结合,并减少纤维素中的结晶,以使全纤维素级分具有生物利用率。但是,到目前为止,没有任何一种用于优化沼气生产的技术能够达到理论最高沼气产量120,000–650,000 L t 大多数研究者已经尝试通过脱木素作用来改善厌氧消化池中木质纤维素生物质的利用,以防止细菌的非生产性结合以及减少纤维素中的结晶,目的是使全纤维素级分具有生物利用率。但是,到目前为止,尚未有用于优化沼气生产的技术达到理论最高沼气产量120,000–650,000 L t 大多数研究者已经尝试通过脱木素作用来改善厌氧消化池中木质纤维素生物质的利用,以防止细菌的非生产性结合,并减少纤维素中的结晶,以使全纤维素级分具有生物利用率。但是,到目前为止,没有任何一种用于优化沼气生产的技术能够达到理论最高沼气产量120,000–650,000 L t-1。经常使用的技术包括:预处理(化学,生物,物理或它们的组合),共同消化,接种物或生物增补剂的应用,并向厌氧消化池补充微量营养素和纳米颗粒。因此,本综述着重介绍了作者在影响木质素基生物质有效降解的因素方面的研究结果,从而确定了扩大该过程的最佳策略。

更新日期:2019-12-25
down
wechat
bug