当前位置: X-MOL 学术ChemPhysChem › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A First-Principles Study of C3 N Nanostructures: Control and Engineering of the Electronic and Magnetic Properties of Nanosheets, Tubes and Ribbons.
ChemPhysChem ( IF 2.3 ) Pub Date : 2019-12-20 , DOI: 10.1002/cphc.201900852
Asadollah Bafekry 1, 2 , Catherine Stampfl 3 , S Farjami Shayesteh 1
Affiliation  

Using first‐principles calculations we systematically investigate the atomic, electronic and magnetic properties of novel two‐dimensional materials (2DM) with a stoichiometry C3N which has recently been synthesized. We investigate how the number of layers affect the electronic properties by considering monolayer, bilayer and trilayer structures, with different stacking of the layers. We find that a transition from semiconducting to metallic character occurs which could offer potential applications in future nanoelectronic devices. We also study the affect of width of C3N nanoribbons, as well as the radius and length of C3N nanotubes, on the atomic, electronic and magnetic properties. Our results show that these properties can be modified depending on these dimensions, and depend markedly on the nature of the edge states. Functionalization of the nanostructures by the adsorption of H adatoms is found induce metallic, half‐metallic, semiconducting and ferromagnetic behavior, which offers an approach to tailor the properties, as can the application of strain. Our calculations give insight into this new family of C3N nanostructures, which reveal unusual electronic and magnetic properties, and may have great potential in applications such as sensors, electronics and optoelectronic at the nanoscale.

中文翻译:

C3N纳米结构的第一性原理研究:纳米片,管和带的电子和磁性性质的控制和工程。

使用第一性原理计算,我们系统地研究了化学成分为C 3 N的新型二维材料(2DM)的原子,电子和磁性性质,该材料最近已合成。我们通过考虑单层,双层和三层结构(层的堆叠方式不同)来研究层数如何影响电子性能。我们发现发生了从半导体到金属特性的转变,这可能在未来的纳米电子器件中提供潜在的应用。我们还研究的C宽度的影响3 Ñ纳米带,以及C的半径和长度3N纳米管,在原子,电子和磁性能上。我们的结果表明,可以根据这些尺寸来修改这些属性,并且明显取决于边缘状态的性质。人们发现,通过吸附H原子而使纳米结构功能化,会引起金属,半金属,半导体和铁磁行为,这为定制特性提供了一种方法,应变的应用也是如此。我们的计算提供了对这个新的C 3 N纳米结构家族的深刻见解,这些家族揭示了异常的电子和磁性,并且在纳米级的传感器,电子学和光电学等应用中可能具有巨大的潜力。
更新日期:2019-12-20
down
wechat
bug