当前位置: X-MOL 学术ChemElectroChem › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Boosting microbial fuel cells performance by the combination of an external supercapacitor: an electrochemical study
ChemElectroChem ( IF 3.5 ) Pub Date : 2019-12-22 , DOI: 10.1002/celc.201901876
Federico Poli 1 , Jacopo Seri 1 , Carlo Santoro 2 , Francesca Soavi 1
Affiliation  

Microbial fuel cell (MFC) technology despite being a promising technology suffers of low power generation that hinders in most of the cases its application as power sources. In fact, usually, MFCs are coupled with supercapacitors or batteries and these storage units accumulate the energy harvested by MFCs and deliver it on demand. In this work, the electrodes of a MFC are used as electrodes of an internal supercapacitor and discharges and self‐recharges are performed and investigated. Discharges between 1.5 mA and 4 mA were presented producing a maximum power of 1.59 mW. Discharges between 1 mA and 100 mA and recharges are systematically studied for three commercial supercapacitors (SCs) having different capacitance of 1 F, 3 F and 6 F respectively. MFC was also parallel connected with external SCs connected in parallel and discharged galvanostatically. SC was self‐recharged by the MFC without any additional external power sources. At lower current pulses, MFC contributed to the overall capacitance probably due to its faradaic component. At higher current pulses, the use of SCs enable to get the energy harvested by MFCs at power levels that could not be achieved with MFC alone. This study demonstrates that by a proper connection and operation mode of MFC and SC it is possible to improve and maximize the performance of each single unit. Understanding the MFC‐ SC combination is important for identifying the right practical application for which the combination is suitable.

中文翻译:

通过结合外部超级电容器提高微生物燃料电池的性能:电化学研究

尽管微生物燃料电池(MFC)技术是一种有前途的技术,但其发电量低,这在大多数情况下阻碍了其作为电源的应用。实际上,通常,MFC与超级电容器或电池耦合,这些存储单元会累积MFC收集的能量并按需提供。在这项工作中,MFC的电极用作内部超级电容器的电极,并进行放电和自充电的研究。出现了1.5 mA至4 mA的放电,产生的最大功率为1.59 mW。系统研究了三种分别具有1 F,3 F和6 F电容的商用超级电容器(SC)的1 mA和100​​ mA之间的放电以及充电。MFC还与外部SC并联连接,外部SC并联并通过恒电流放电。SC由MFC自行充电,无需任何其他外部电源。在较低的电流脉冲下,MFC可能是由于其法拉第成分而对整体电容作出了贡献。在较高的电流脉冲下,使用SC可以使MFC收集到的能量达到单独使用MFC无法实现的功率水平。这项研究表明,通过MFC和SC的正确连接和操作模式,可以改善和最大化每个单元的性能。了解MFC-SC组合对于确定适合该组合的正确实际应用很重要。MFC可能是由于其法拉第成分而为整体电容做出了贡献。在较高的电流脉冲下,使用SC可以使MFC收集到的能量达到单独使用MFC无法实现的功率水平。这项研究表明,通过MFC和SC的正确连接和操作模式,可以改善和最大化每个单元的性能。了解MFC-SC组合对于确定适合该组合的正确实际应用很重要。MFC可能是由于其法拉第成分而对整体电容作出了贡献。在较高的电流脉冲下,使用SC可以使MFC收集到的能量达到单独使用MFC无法实现的功率水平。这项研究表明,通过MFC和SC的正确连接和操作模式,可以改善和最大化每个单元的性能。了解MFC-SC组合对于确定适合该组合的正确实际应用很重要。这项研究表明,通过MFC和SC的正确连接和操作模式,可以改善和最大化每个单元的性能。了解MFC-SC组合对于确定适合该组合的正确实际应用很重要。这项研究表明,通过MFC和SC的正确连接和操作模式,可以改善和最大化每个单元的性能。了解MFC-SC组合对于确定适合该组合的正确实际应用很重要。
更新日期:2019-12-23
down
wechat
bug