当前位置: X-MOL 学术Plant Methods › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Fluctuating light experiments and semi-automated plant phenotyping enabled by self-built growth racks and simple upgrades to the IMAGING-PAM.
Plant Methods ( IF 4.7 ) Pub Date : 2019-12-23 , DOI: 10.1186/s13007-019-0546-1
Dominik Schneider 1, 2 , Laura S Lopez 3 , Meng Li 2 , Joseph D Crawford 3 , Helmut Kirchhoff 2 , Hans-Henning Kunz 3
Affiliation  

Background Over the last years, several plant science labs have started to employ fluctuating growth light conditions to simulate natural light regimes more closely. Many plant mutants reveal quantifiable effects under fluctuating light despite being indistinguishable from wild-type plants under standard constant light. Moreover, many subtle plant phenotypes become intensified and thus can be studied in more detail. This observation has caused a paradigm shift within the photosynthesis research community and an increasing number of scientists are interested in using fluctuating light growth conditions. However, high installation costs for commercial controllable LED setups as well as costly phenotyping equipment can make it hard for small academic groups to compete in this emerging field. Results We show a simple do-it-yourself approach to enable fluctuating light growth experiments. Our results using previously published fluctuating light sensitive mutants, stn7 and pgr5, confirm that our low-cost setup yields similar results as top-prized commercial growth regimes. Moreover, we show how we increased the throughput of our Walz IMAGING-PAM, also found in many other departments around the world. We have designed a Python and R-based open source toolkit that allows for semi-automated sample segmentation and data analysis thereby reducing the processing bottleneck of large experimental datasets. We provide detailed instructions on how to build and functionally test each setup. Conclusions With material costs well below USD$1000, it is possible to setup a fluctuating light rack including a constant light control shelf for comparison. This allows more scientists to perform experiments closer to natural light conditions and contribute to an emerging research field. A small addition to the IMAGING-PAM hardware not only increases sample throughput but also enables larger-scale plant phenotyping with automated data analysis.

中文翻译:

通过自建的生长架和对 IMAGING-PAM 的简单升级,可以进行波动光实验和半自动化植物表型分析。

背景 在过去的几年里,一些植物科学实验室已经开始使用波动的生长光照条件来更接近地模拟自然光状态。许多植物突变体在波动的光下显示出可量化的影响,尽管在标准恒定光下与野生型植物无法区分。此外,许多微妙的植物表型变得更加强烈,因此可以进行更详细的研究。这一观察结果在光合作用研究界引起了范式转变,越来越多的科学家对使用波动的光生长条件感兴趣。然而,商业可控 LED 装置的高安装成本以及昂贵的表型分析设备可能使小型学术团体难以在这一新兴领域竞争。结果 我们展示了一种简单的自己动手的方法来实现波动的光生长实验。我们使用先前发表的波动光敏突变体 stn7 和 pgr5 的结果证实,我们的低成本设置产生了与顶级商业增长方案相似的结果。此外,我们展示了我们如何提高 Walz IMAGING-PAM 的吞吐量,这在世界各地的许多其他部门中也有发现。我们设计了一个基于 Python 和 R 的开源工具包,允许半自动化的样本分割和数据分析,从而减少大型实验数据集的处理瓶颈。我们提供有关如何构建和功能测试每个设置的详细说明。结论 由于材料成本远低于 1000 美元,因此可以设置一个包含恒定照明控制架的波动灯架进行比较。这使更多的科学家能够在更接近自然光条件下进行实验,并为新兴的研究领域做出贡献。IMAGING-PAM 硬件的一个小补充不仅可以提高样品通量,还可以通过自动数据分析实现更大规模的植物表型分析。
更新日期:2019-12-23
down
wechat
bug