当前位置: X-MOL 学术Compos. Part A Appl. Sci. Manuf. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Frontal Polymerization of Unidirectional Carbon-Fiber-Reinforced Composites
Composites Part A: Applied Science and Manufacturing ( IF 8.1 ) Pub Date : 2019-12-23 , DOI: 10.1016/j.compositesa.2019.105689
E. Goli , N.A. Parikh , M. Yourdkhani , N.G. Hibbard , J.S. Moore , N.R. Sottos , P.H. Geubelle

We formulate a homogenized thermo-chemical model to simulate the manufacturing of unidirectional composites made of carbon fibers embedded in a thermosetting dicyclopentadiene (DCPD) matrix using frontal polymerization (FP). The reaction-diffusion model is then solved using the finite element method to investigate the evolution of the temperature and degree of cure during the fabrication process. The results reveal two different processing regimes: At lower fiber volume fractions, the polymerization front speed increases with the fiber volume fraction due to the increase in the effective thermal conductivity of the composite. At higher fiber volume fractions, the front velocity decreases with increasing fiber content due to the reduced heat source generated by the exothermic reaction. The 1-D simulations are complemented with 2-D studies that include heat losses to the surroundings. The model predictions are validated with experiments conducted on carbon/DCPD composite panels manufactured through frontal polymerization.



中文翻译:

单向碳纤维增强复合材料的正面聚合

我们制定了均化的热化学模型,以模拟使用额叶聚合(FP)将碳纤维嵌入热固性二环戊二烯(DCPD)基质中的碳纤维制成的单向复合材料的制造过程。然后使用有限元方法求解反应扩散模型,以研究制造过程中温度的变化和固化程度。结果揭示了两种不同的加工方式:在较低的纤维体积分数下,由于复合材料有效导热率的增加,聚合前沿速度随纤维体积分数的增加而增加。在较高的纤维体积分数下,由于放热反应产生的热源减少,前沿速度随纤维含量的增加而降低。一维模拟与二维研究相辅相成,其中包括对周围环境的热损失。通过对通过正面聚合制造的碳/ DCPD复合板进行的实验验证了模型预测。

更新日期:2019-12-23
down
wechat
bug