当前位置: X-MOL 学术Faraday Discuss. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A multiscale modelling approach to elucidate the mechanism of the oxygen evolution reaction at the hematite–water interface
Faraday Discussions ( IF 3.3 ) Pub Date : 2019-12-23 , DOI: 10.1039/c9fd00140a
V. Sinha 1, 2, 3, 4, 5 , D. Sun 4, 6, 7, 8, 9 , E. J. Meijer 4, 6, 7, 8, 9 , T. J. H. Vlugt 4, 5, 10, 11, 12 , A. Bieberle-Hütter 1, 2, 3, 4
Affiliation  

Photoelectrochemical (PEC) splitting of water to make hydrogen is a promising clean-energy technology. The oxygen evolution reaction (OER) largely determines the energy efficiency in PEC water-splitting. Hematite, which is a cheap and sustainable semiconductor material with excellent chemical properties, a favourable band gap (2.1 eV) and composed of earth abundant elements is a suitable model photoanode material for studying OER. To understand the design of energy efficient anodes, it is highly desirable to have mechanistic insight into OER at an atomistic level which can be directly connected to experimentally measured quantities. We present a multiscale computational model of OER which connects the thermodynamics and kinetics of elementary charge transfer reactions in OER to kinetics of OER at laboratory length and time scales. We couple density functional theory (DFT) and DFT based molecular dynamics (DFT-MD) simulations with solvent effects at an atomistic level with kinetic Monte Carlo (kMC) simulations at a coarse-grained level in our multiscale model. The time and applied bias potential dependent surface coverage, which are experimentally not known, and the O2 evolution rate during OER at the hematite–water interface are calculated by the multiscale model. Furthermore, the multiscale model demonstrates the effect of explicitly modelling the interaction of water with the electrode surface via direct adsorption.

中文翻译:

一种多尺度建模方法,阐明赤铁矿-水界面的氧气逸出反应机理

水的光电化学(PEC)分解以制氢是一种有前途的清洁能源技术。氧气析出反应(OER)在很大程度上决定了PEC水分解的能量效率。赤铁矿是一种廉价且可持续的半导体材料,具有优异的化学性能,良好的带隙(2.1 eV)且由富含地球的元素组成,是研究OER的合适模型光阳极材料。为了理解高能效阳极的设计,非常需要对原子能级的OER具有机械洞察力,该能级可以直接与实验测量的量关联。我们提出了OER的多尺度计算模型,该模型将OER中基本电荷转移反应的热力学和动力学与实验室长度和时间尺度上的OER动力学联系起来。在我们的多尺度模型中,我们将密度泛函理论(DFT)和基于DFT的分子动力学(DFT-MD)模拟与原子级的溶剂效应与动力学蒙特卡洛(kMC)模拟的粗粒度级耦合。时间和施加的偏置电势依赖的表面覆盖率,这在实验上是未知的,并且O利用多尺度模型计算了赤铁矿-水界面OER过程中的2个演化速率。此外,多尺度模型展示了通过直接吸附对水与电极表面的相互作用进行显式建模的效果。
更新日期:2019-12-23
down
wechat
bug