当前位置: X-MOL 学术CrystEngComm › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The role of ultramicropores in the CO2 adsorption capacity of Fe–BTC crystallites synthesized with a perturbation-assisted nanofusion synthesis strategy
CrystEngComm ( IF 2.6 ) Pub Date : 2019/12/23 , DOI: 10.1039/c9ce01626k
Aysu Yurduşen 1, 2, 3, 4, 5 , Alp Yürüm 3, 4, 5, 6 , Yuda Yürüm 1, 2, 3, 4, 5
Affiliation  

Herein, we report the highest BET surface area (1312 m2 g−1) and the highest total pore volume (1.41 cm3 g−1) reported for Fe–BTC to date. More importantly, a CO2 adsorption capacity of 27.5 wt% (6.24 mmol g−1) is achieved at 8.5 bar and 298 K, which is the highest reported value for Fe–BTC to date. A perturbation-assisted nanofusion mechanism is used to synthesize Fe–BTCs, which form hierarchical pores. The synthesis parameters are optimized to enhance the amount of CO2 adsorbed. The highest CO2 adsorption capacity is achieved by Fe–BTC, which has ultramicropores (pore diameter <0.7 nm) in its pore structure. This measured CO2 uptake capacity (1 bar and 298 K) is higher than those of the MOFs (MOF-177, UMCM-1, MIL-101(Cr), ZIF-8, and MOF-5) reported in the literature. Herein, we experimentally prove the significant contribution of ultramicropores and narrow micropores for the adsorbed CO2 amount. In conclusion, this study i) reports a strategy that increases the BET surface area (1.6 times), total pore volume (3.1 times) and CO2 adsorption capacity (1.66 times) and ii) shows the critical role of ultramicropores and the volume and distribution of narrow micropores on the adsorbed CO2 amount. The reported synthesis strategy can lead the way for the synthesis of highly porous sorbents with an enhanced BET surface area, total pore volume and CO2 sorption capacity, which should be further examined for other porous sorbents to achieve CO2 sorption goals.

中文翻译:

超微孔在微扰辅助纳米融合合成策略下合成的Fe–BTC晶体的CO2吸附能力中的作用

在此,我们报道了迄今为止报道的Fe–BTC的最高BET表面积(1312 m 2 g -1)和最高总孔体积(1.41 cm 3 g -1)。更重要的是,在8.5 bar和298 K下获得了27.5 wt%(6.24 mmol g -1)的CO 2吸附容量,这是迄今为止Fe-BTC的最高报道值。扰动辅助的纳米融合机制被用于合成Fe-BTCs,这些Fe-BTCs形成了分层的孔。优化合成参数以提高吸附的CO 2量。Fe-BTC具有最高的CO 2吸附能力,其孔结构具有超微孔(孔径<0.7 nm)。此测量的CO2吸收容量(1 bar和298 K)高于文献中报道的MOF(MOF-177,UMCM-1,MIL-101(Cr),ZIF-8和MOF-5)。在这里,我们实验证明了超微孔和窄微孔对CO 2吸附量的显着贡献。总而言之,这项研究(i)报告了增加BET表面积(1.6倍),总孔体积(3.1倍)和CO 2吸附容量(1.66倍)的策略,并且ii)显示了超微孔的关键作用以及体积和窄微孔在CO 2吸附量上的分布。报道的合成策略可为合成具有更高的BET表面积,总孔体积和CO 2的高孔隙度吸附剂铺平道路吸附能力,应进一步检查其他多孔吸附剂以实现CO 2吸附目标。
更新日期:2020-02-13
down
wechat
bug