当前位置: X-MOL 学术Dalton Trans. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Methanol-assisted synthesis of Ni3+-doped ultrathin NiZn-LDH nanomeshes for boosted alkaline water splitting.
Dalton Transactions ( IF 4 ) Pub Date : 2020-01-08 , DOI: 10.1039/c9dt04282b
Yingbo Gong 1 , Jianfeng Huang 1 , Liyun Cao 1 , Koji Kajiyoshi 2 , Dan Yang 1 , Yongqiang Feng 1 , Lingjiang Kou 1 , Liangliang Feng 3
Affiliation  

The construction of nanoporous structure combined with the optimization of electronic structure toward electrocatalysts could be a promising and effective approach to boosting their catalytic performance. Herein, we rationally synthesized a novel Ni3+-doped ultrathin NiZn layered double hydroxide nanomesh supported on nickel foam (Ni(ii,iii)Zn-LDH/NF-nm) by a facile one-step methanol-assisted hydrothermal method. Results show that methanol can not only trigger the generation of ultrathin nanomesh structure, but adjust portion of Ni2+ to Ni3+ and thus to result in the Ni3+-doped NiZn-LDH nanomesh material. The nanoporous feature endows Ni(ii,iii)Zn-LDH/NF-nm with abundant exposed catalytic active sites and fast mass transfer for alkaline water electrolysis. More importantly, the Ni3+ doping can facilitate the available formation of highly active NiOOH phase on the surface for the oxygen evolution reaction (OER), accompanied by increased oxygen vacancies that can greatly enhance the electronic conductivity, leading to the improved intrinsic activity and the accelerated electrocatalytic OER reaction kinetics. As expected, the as-prepared Ni(ii,iii)Zn-LDH/NF-nm has relatively low overpotentials of 320 and 370 mV to drive large current densities of 100 and 500 mA cm-2, respectively, and a small Tafel slope of 63.9 mV dec-1, extremely superior to RuO2/NF and NiZn-LDH/NF-ns counterpart. Meanwhile, the electrolyzer assembled for overall water splitting by Ni(ii,iii)Zn-LDH/NF-nm yields the outstanding catalytic activity and stability. This work highlights a feasible strategy to design and develop high-efficiency water splitting electrocatalysts via engineering on composition and nanostructure.

中文翻译:

甲醇辅助掺杂的Ni3 +掺杂的超薄NiZn-LDH纳米网的合成,以促进碱性水的分解。

纳米孔结构的构建与电子催化剂的电子结构优化相结合可能是提高其催化性能的一种有前途和有效的方法。在这里,我们合理地合成了一种新型的Ni3 +掺杂的超薄NiZn层状双氢氧化物纳米网状镍泡沫(Ni(ii,iii)Zn-LDH / NF-nm)上负载的方便的一步甲醇辅助水热方法。结果表明,甲醇不仅可以触发超薄纳米网状结构的产生,而且可以将Ni2 +的一部分调节为Ni3 +,从而得到掺杂Ni3 +的NiZn-LDH纳米网状材料。纳米孔特征赋予Ni(ii,iii)Zn-LDH / NF-nm具有丰富的暴露催化活性位点和快速的质量转移,可用于碱性水电解。更重要的是,Ni3 +掺杂可促进表面上高活性NiOOH相的形成,以进行氧释放反应(OER),并伴随增加的氧空位,从而大大提高电子电导率,从而改善内在活性并加速电催化OER反应动力学。如预期的那样,所制备的Ni(ii,iii)Zn-LDH / NF-nm具有相对较低的320和370 mV的过电势,分别驱动100和500 mA cm-2的大电流密度以及小的Tafel斜率63.9 mV dec-1的电流,远远优于RuO2 / NF和NiZn-LDH / NF-ns对应物。同时,通过Ni(ii,iii)Zn-LDH / NF-nm组装的用于总水分解的电解槽具有出色的催化活性和稳定性。
更新日期:2020-01-08
down
wechat
bug