当前位置: X-MOL 学术Nat. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nanoscale percolation in doped BaZrO3 for high proton mobility.
Nature Materials ( IF 37.2 ) Pub Date : 2019-12-23 , DOI: 10.1038/s41563-019-0561-7
Fabian M Draber 1 , Christiane Ader 1 , John P Arnold 1 , Sebastian Eisele 1, 2 , Steffen Grieshammer 1, 2 , Shu Yamaguchi 3 , Manfred Martin 1, 2, 4, 5
Affiliation  

Acceptor-doped barium zirconate is a promising proton-conducting oxide for various applications, for example, electrolysers, fuel cells or methane-conversion cells. Despite many experimental and theoretical investigations there is, however, only a limited understanding as to how to connect the complex microscopic proton motion and the macroscopic proton conductivity for the full range of acceptor levels, from diluted acceptors to concentrated solid solutions. Here we show that a combination of density functional theory calculations and kinetic Monte Carlo simulations enables this connection. At low concentrations, acceptors trap protons, which results in a decrease of the average proton mobility. With increasing concentration, however, acceptors form nanoscale percolation pathways with low proton migration energies, which leads to a strong increase of the proton mobility and conductivity. Comparing our simulated proton conductivities with experimental values for yttrium-doped barium zirconate yields excellent agreement. We then predict that ordered dopant structures would not only strongly enhance the proton conductivities, but would also enable one- or two-dimensional proton conduction in barium zirconate. Finally, we show how the properties of other dopants influence the proton conductivity.

中文翻译:

掺杂BaZrO3中的纳米级渗滤可实现高质子迁移率。

受体掺杂的锆酸钡是一种有前途的质子传导氧化物,可用于各种应用,例如电解槽,燃料电池或甲烷转化电池。尽管进行了许多实验和理论研究,但是对于如何将复杂的微观质子运动与宏观质子电导率联系起来,从稀释的受体到浓缩的固溶体,在整个范围的受体水平上,人们仅有有限的理解。在这里,我们证明了密度泛函理论计算和动力学蒙特卡洛模拟的结合使这种连接成为可能。在低浓度下,受体会捕获质子,从而导致平均质子迁移率下降。但是,随着浓度的增加,受体形成具有低质子迁移能的纳米级渗流途径,这导致质子迁移率和电导率大大提高。将我们的模拟质子电导率与掺钇锆酸钡的实验值进行比较,可以得出很好的一致性。然后我们预测,有序的掺杂剂结构不仅会大大增强质子的电导率,而且还将使锆酸钡中的一维或二维质子传导成为可能。最后,我们展示了其他掺杂剂的性质如何影响质子传导性。
更新日期:2019-12-23
down
wechat
bug