当前位置: X-MOL 学术Laser Photonics Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Non‐Reciprocity in High‐Q Ferromagnetic Microspheres via Photonic Spin–Orbit Coupling
Laser & Photonics Reviews ( IF 9.8 ) Pub Date : 2019-12-23 , DOI: 10.1002/lpor.201900252
Cheng‐Zhe Chai 1, 2 , Hao‐Qi Zhao 1, 2 , Hong X. Tang 3 , Guang‐Can Guo 1, 2 , Chang‐Ling Zou 1, 2 , Chun‐Hua Dong 1, 2
Affiliation  

Non‐reciprocal devices serving as fundamental elements in photonic and microwave circuits have attracted great attention for its applications in both classical and quantum information processing. The spin–orbit coupling (SOC) of light in microstructures shows that the polarization affects and controls the spatial degrees of freedom of light, which could been exploited to break the reciprocity of light transmission. Here, non‐reciprocal light transmission is demonstrated experimentally in high‐quality factor yttrium iron garnet microspheres via photonic SOC and Faraday effect. By applying an magnetic field in the vertical direction of resonator equator, the degeneracy of the clockwise and counter‐clockwise whispering gallery modes are lifted. The non‐reciprocal effect is shown for both polarizations and promises applications including non‐reciprocal photonic devices, magneto‐optic modulators, and magnetometers.

中文翻译:

通过光子自旋-轨道耦合在高Q铁磁微球中的互不干扰

在光子和微波电路中,作为不可逆元件的不可逆设备因其在经典和量子信息处理中的应用而备受关注。光在微结构中的自旋轨道耦合(SOC)表明,偏振会影响和控制光的空间自由度,可以利用它来破坏光传输的互易性。在这里,通过光子SOC和法拉第效应,在高质量因子钇铁石榴石微球中通过实验证明了不可逆的光传输。通过在谐振器赤道的垂直方向施加磁场,可以消除顺时针和逆时针耳语回廊模式的退化。
更新日期:2019-12-23
down
wechat
bug