当前位置: X-MOL 学术Mol. Ecol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Identification of a genetic network for an ecologically relevant behavioural phenotype in Drosophila melanogaster.
Molecular Ecology ( IF 4.5 ) Pub Date : 2020-01-07 , DOI: 10.1111/mec.15341
Wenyu Zhang 1 , Guy Richard Reeves 1 , Diethard Tautz 1
Affiliation  

Pupation site choice of Drosophila third-instar larvae is critical for the survival of individuals, as pupae are exposed to various biotic and abiotic dangers while immobilized during the 3-4 days of metamorphosis. This singular behavioural choice is sensitive to both environmental and genetic factors. Here, we developed a high-throughput phenotyping approach to assay the variation in pupation height in Drosophila melanogaster, while controlling for possibly confounding factors. We find substantial variation of mean pupation height among sampled natural stocks and we show that the Drosophila Genetic Reference Panel (DGRP) reflects this variation. Using the DGRP stocks for genome-wide association (GWA) mapping, 16 loci involved in determining pupation height could be resolved. The candidate genes in these loci are enriched for high expression in the larval central nervous system. A genetic network could be constructed from the candidate loci, which places scribble (scrib) at the centre, plus other genes known to be involved in nervous system development, such as Epidermal growth factor receptor (Egfr) and p53. Using gene disruption lines, we could functionally validate several of the initially identified loci, as well as additional loci predicted from network analysis. Our study shows that the combination of high-throughput phenotyping with a genetic analysis of variation captured from the wild can be used to approach the genetic dissection of an environmentally relevant behavioural phenotype.

中文翻译:

果蝇的生态相关行为表型的遗传网络的鉴定。

果蝇三龄幼虫的化脓部位选择对于个体的生存至关重要,因为在变态的3-4天中固定化时,其暴露于各种生物和非生物危险中。这种单一的行为选择对环境和遗传因素均敏感。在这里,我们开发了一种高通量的表型分析方法来测定果蝇果蝇高度的变化,同时控制可能造成混淆的因素。我们发现抽样自然种群之间平均化up高度存在很大差异,并且我们证明果蝇遗传参考专家组(DGRP)反映了这种差异。使用DGRP储备库进行全基因组关联(GWA)定位,可以确定参与确定化up高度的16个基因座。这些基因座中的候选基因富集,可在幼虫中枢神经系统中高效表达。可以从候选基因座构建一个遗传网络,该基因座将涂鸦(scrib)放在中心,以及其他已知与神经系统发育有关的基因,例如表皮生长因子受体(Egfr)和p53。使用基因破坏系,我们可以在功能上验证几个最初鉴定的基因座,以及通过网络分析预测的其他基因座。我们的研究表明,高通量表型与野生捕获变异的遗传分析相结合可用于处理与环境相关的行为表型的遗传解剖。将杂文(scrib)置于中心,再加上其他已知与神经系统发育有关的基因,例如表皮生长因子受体(Egfr)和p53。使用基因破坏系,我们可以在功能上验证几个最初鉴定的基因座,以及通过网络分析预测的其他基因座。我们的研究表明,高通量表型与野生捕获变异的遗传分析相结合可用于处理与环境相关的行为表型的遗传解剖。将杂文(scrib)置于中心,再加上其他已知与神经系统发育有关的基因,例如表皮生长因子受体(Egfr)和p53。使用基因破坏系,我们可以在功能上验证几个最初鉴定的基因座,以及通过网络分析预测的其他基因座。我们的研究表明,高通量表型与野生捕获变异的遗传分析相结合可用于处理与环境相关的行为表型的遗传解剖。以及根据网络分析预测的其他基因座。我们的研究表明,高通量表型与野生捕获变异的遗传分析相结合可用于处理与环境相关的行为表型的遗传解剖。以及根据网络分析预测的其他基因座。我们的研究表明,高通量表型与野生捕获变异的遗传分析相结合可用于处理与环境相关的行为表型的遗传解剖。
更新日期:2020-01-07
down
wechat
bug