当前位置: X-MOL 学术J Neurooncol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Prediction of lower-grade glioma molecular subtypes using deep learning.
Journal of Neuro-Oncology ( IF 3.2 ) Pub Date : 2019-12-21 , DOI: 10.1007/s11060-019-03376-9
Yutaka Matsui 1, 2 , Takashi Maruyama 1, 3 , Masayuki Nitta 1, 3 , Taiichi Saito 3 , Shunsuke Tsuzuki 3 , Manabu Tamura 1, 3 , Kaori Kusuda 1 , Yasukazu Fukuya 1 , Hidetsugu Asano 1, 2 , Takakazu Kawamata 3 , Ken Masamune 1 , Yoshihiro Muragaki 1, 3
Affiliation  

INTRODUCTION It is useful to know the molecular subtype of lower-grade gliomas (LGG) when deciding on a treatment strategy. This study aims to diagnose this preoperatively. METHODS A deep learning model was developed to predict the 3-group molecular subtype using multimodal data including magnetic resonance imaging (MRI), positron emission tomography (PET), and computed tomography (CT). The performance was evaluated using leave-one-out cross validation with a dataset containing information from 217 LGG patients. RESULTS The model performed best when the dataset contained MRI, PET, and CT data. The model could predict the molecular subtype with an accuracy of 96.6% for the training dataset and 68.7% for the test dataset. The model achieved test accuracies of 58.5%, 60.4%, and 59.4% when the dataset contained only MRI, MRI and PET, and MRI and CT data, respectively. The conventional method used to predict mutations in the isocitrate dehydrogenase (IDH) gene and the codeletion of chromosome arms 1p and 19q (1p/19q) sequentially had an overall accuracy of 65.9%. This is 2.8 percent point lower than the proposed method, which predicts the 3-group molecular subtype directly. CONCLUSIONS A deep learning model was developed to diagnose the molecular subtype preoperatively based on multi-modality data in order to predict the 3-group classification directly. Cross-validation showed that the proposed model had an overall accuracy of 68.7% for the test dataset. This is the first model to double the expected value for a 3-group classification problem, when predicting the LGG molecular subtype.

中文翻译:

使用深度学习预测低级神经胶质瘤分子亚型。

简介在决定治疗策略时,了解低级神经胶质瘤(LGG)的分子亚型是有用的。这项研究旨在术前诊断。方法建立了深度学习模型,以使用包括磁共振成像(MRI),正电子发射断层扫描(PET)和计算机断层扫描(CT)在内的多峰数据预测3组分子亚型。使用留一法交叉验证和包含来自217个LGG患者的信息的数据集来评估性能。结果当数据集包含MRI,PET和CT数据时,该模型表现最佳。该模型可以以训练数据集的96.6%和测试数据集的68.7%的准确性预测分子亚型。当数据集仅包含MRI,MRI和PET时,该模型的测试准确度为58.5%,60.4%和59.4%,分别为MRI和CT数据。用来预测异柠檬酸脱氢酶(IDH)基因突变和染色体臂1p和19q(1p / 19q)的代码缺失的常规方法的总准确性为65.9%。这比提出的方法低了2.8个百分点,该方法可以直接预测3组分子的亚型。结论建立了深度学习模型,可根据多模态数据在术前诊断分子亚型,以便直接预测3组分类。交叉验证表明,所提出的模型对测试数据集的总体准确性为68.7%。当预测LGG分子亚型时,这是第一个将三组分类问题的期望值加倍的模型。用来预测异柠檬酸脱氢酶(IDH)基因突变和染色体臂1p和19q(1p / 19q)的代码缺失的常规方法的总准确性为65.9%。这比提出的方法低了2.8个百分点,该方法可以直接预测3组分子的亚型。结论建立了深度学习模型,可根据多模态数据在术前诊断分子亚型,以便直接预测3组分类。交叉验证表明,所提出的模型对测试数据集的总体准确性为68.7%。当预测LGG分子亚型时,这是第一个将三组分类问题的期望值加倍的模型。用来预测异柠檬酸脱氢酶(IDH)基因突变和染色体臂1p和19q(1p / 19q)的代码缺失的常规方法的总准确性为65.9%。这比提出的方法低了2.8个百分点,该方法可以直接预测3组分子的亚型。结论建立了深度学习模型,可根据多模态数据在术前诊断分子亚型,以便直接预测3组分类。交叉验证表明,所提出的模型对测试数据集的总体准确性为68.7%。当预测LGG分子亚型时,这是第一个将三组分类问题的期望值加倍的模型。这比提出的方法低了2.8个百分点,该方法可以直接预测3组分子的亚型。结论建立了深度学习模型,可根据多模态数据在术前诊断分子亚型,以便直接预测3组分类。交叉验证表明,所提出的模型对测试数据集的总体准确性为68.7%。当预测LGG分子亚型时,这是第一个将三组分类问题的期望值加倍的模型。这比提出的方法低了2.8个百分点,该方法可以直接预测3组分子的亚型。结论建立了深度学习模型,可根据多模态数据在术前诊断分子亚型,以便直接预测3组分类。交叉验证表明,所提出的模型对测试数据集的总体准确性为68.7%。当预测LGG分子亚型时,这是第一个将三组分类问题的期望值加倍的模型。交叉验证表明,所提出的模型对测试数据集的总体准确性为68.7%。当预测LGG分子亚型时,这是第一个将三组分类问题的期望值加倍的模型。交叉验证表明,所提出的模型对测试数据集的总体准确性为68.7%。当预测LGG分子亚型时,这是第一个将三组分类问题的期望值加倍的模型。
更新日期:2019-12-21
down
wechat
bug