当前位置: X-MOL 学术Plant Physiol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Low-Phosphate Chromatin Dynamics Predict a Cell Wall Remodeling Network in Rice Shoots.
Plant Physiology ( IF 6.5 ) Pub Date : 2019-12-19 , DOI: 10.1104/pp.19.01153
Maryam Foroozani 1 , Sara Zahraeifard 1 , Dong-Ha Oh 1 , Guannan Wang 1 , Maheshi Dassanayake 1 , Aaron P Smith 2
Affiliation  

Phosphorus (P) is an essential plant macronutrient vital to fundamental metabolic processes. Plant-available P is low in most soils, making it a frequent limiter of growth. Declining P reserves for fertilizer production exacerbates this agricultural challenge. Plants modulate complex responses to fluctuating P levels via global transcriptional regulatory networks. Although chromatin structure plays a substantial role in controlling gene expression, the chromatin dynamics involved in regulating P homeostasis have not been determined. Here we define distinct chromatin states across the rice (Oryza sativa) genome by integrating multiple chromatin marks, including the H2A.Z histone variant, H3K4me3 modification, and nucleosome positioning. In response to P starvation, 40% of all protein-coding genes exhibit a transition from one chromatin state to another at their transcription start site. Several of these transitions are enriched in subsets of genes differentially expressed under P deficiency. The most prominent subset supports the presence of a coordinated signaling network that targets cell wall structure and is regulated in part via a decrease of H3K4me3 at transcription start sites. The P starvation-induced chromatin dynamics and correlated genes identified here will aid in enhancing P use efficiency in crop plants, benefitting global agriculture.

中文翻译:


低磷酸盐染色质动力学预测水稻芽中的细胞壁重塑网络。



磷 (P) 是一种重要的植物大量营养素,对基本代谢过程至关重要。大多数土壤中植物有效磷含量较低,这使其成为生长的常见限制因素。用于化肥生产的磷储备下降加剧了这一农业挑战。植物通过全局转录调控网络调节对磷水平波动的复杂反应。尽管染色质结构在控制基因表达中发挥着重要作用,但参与调节 P 稳态的染色质动力学尚未确定。在这里,我们通过整合多个染色质标记(包括 H2A.Z 组蛋白变体、H3K4me3 修饰和核小体定位)来定义整个水稻 (Oryza sativa) 基因组的不同染色质状态。为了响应磷饥饿,40% 的蛋白质编码基因在其转录起始位点表现出从一种染色质状态到另一种染色质状态的转变。其中一些转变富含缺磷条件下差异表达的基因子集。最突出的子集支持以细胞壁结构为目标的协调信号网络的存在,并部分通过转录起始位点 H3K4me3 的减少进行调节。这里确定的磷饥饿诱导的染色质动态和相关基因将有助于提高作物的磷利用效率,造福全球农业。
更新日期:2020-03-03
down
wechat
bug