当前位置: X-MOL 学术Science › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Dissipation-induced structural instability and chiral dynamics in a quantum gas
Science ( IF 56.9 ) Pub Date : 2019-12-19 , DOI: 10.1126/science.aaw4465
Nishant Dogra 1 , Manuele Landini 1 , Katrin Kroeger 1 , Lorenz Hruby 1 , Tobias Donner 1 , Tilman Esslinger 1
Affiliation  

Chirality by dissipation Quantum many-body systems can display exotic dynamics in the presence of dissipation. Dogra et al. studied such dynamics in a system consisting of an atomic Bose-Einstein condensate located in an optical cavity and exposed to a standing wave of laser light. Light scattering off the atomic cloud and into the cavity resulted in two distinct, spatially patterned collective modes for the atoms. When the researchers then introduced dissipation to couple the two modes, the system followed a directed circular path through phase space, rotating between the modes. Science, this issue p. 1496 Chiral dynamics emerge in an atomic Bose-Einstein condensate in an optical cavity in the presence of dissipation. Dissipative and unitary processes define the evolution of a many-body system. Their interplay gives rise to dynamical phase transitions and can lead to instabilities. In this study, we observe a nonstationary state of chiral nature in a synthetic many-body system with independently controllable unitary and dissipative couplings. Our experiment is based on a spinor Bose gas interacting with an optical resonator. Orthogonal quadratures of the resonator field coherently couple the Bose-Einstein condensate to two different atomic spatial modes, whereas the dispersive effect of the resonator losses mediates a dissipative coupling between these modes. In a regime of dominant dissipative coupling, we observe the chiral evolution and relate it to a positional instability.

中文翻译:

量子气体中耗散引起的结构不稳定性和手性动力学

耗散的手性 量子多体系统可以在耗散存在的情况下显示奇异的动力学。多格拉等人。在一个系统中研究了这种动力学,该系统由位于光学腔中的原子玻色 - 爱因斯坦凝聚体组成,并暴露于激光驻波。光从原子云散射到空腔中,导致原子产生两种不同的、空间图案化的集体模式。当研究人员随后引入耗散来耦合两种模式时,系统沿着有向圆形路径穿过相空间,在模式之间旋转。科学,这个问题 p。1496 年,在存在耗散的情况下,光学腔中的原子玻色-爱因斯坦凝聚体中出现了手性动力学。耗散和单一过程定义了多体系统的演化。它们的相互作用引起动态相变并可能导致不稳定性。在这项研究中,我们在具有独立可控单体和耗散耦合的合成多体系统中观察到手性性质的非平稳状态。我们的实验基于与光学谐振腔相互作用的自旋玻色气体。谐振器场的正交正交将玻色-爱因斯坦凝聚相干耦合到两个不同的原子空间模式,而谐振器损耗的色散效应介导了这些模式之间的耗散耦合。在占主导地位的耗散耦合的情况下,我们观察手性演化并将其与位置不稳定性联系起来。我们在合成多体系统中观察到手性的非平稳状态,该系统具有独立可控的整体和耗散耦合。我们的实验基于与光学谐振腔相互作用的自旋玻色气体。谐振器场的正交正交将玻色-爱因斯坦凝聚相干耦合到两个不同的原子空间模式,而谐振器损耗的色散效应介导了这些模式之间的耗散耦合。在占主导地位的耗散耦合的情况下,我们观察手性演化并将其与位置不稳定性联系起来。我们在合成多体系统中观察到手性的非平稳状态,该系统具有独立可控的整体和耗散耦合。我们的实验基于与光学谐振腔相互作用的自旋玻色气体。谐振器场的正交正交将玻色-爱因斯坦凝聚相干耦合到两个不同的原子空间模式,而谐振器损耗的色散效应介导了这些模式之间的耗散耦合。在占主导地位的耗散耦合的情况下,我们观察手性演化并将其与位置不稳定性联系起来。而谐振器损耗的色散效应介导了这些模式之间的耗散耦合。在占主导地位的耗散耦合的情况下,我们观察手性演化并将其与位置不稳定性联系起来。而谐振器损耗的色散效应介导了这些模式之间的耗散耦合。在占主导地位的耗散耦合的情况下,我们观察手性演化并将其与位置不稳定性联系起来。
更新日期:2019-12-19
down
wechat
bug