当前位置: X-MOL 学术J. Chem. Theory Comput. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Correction to Improving the Accuracy of PCM-UAHF and PCM-UAKS Calculations Using Optimized Electrostatic Scaling Factors.
Journal of Chemical Theory and Computation ( IF 5.7 ) Pub Date : 2019-12-20 , DOI: 10.1021/acs.jctc.9b01191
Longkun Xu , Michelle L. Coote

During the preparation of the manuscript, we inadvertently made two mistakes: (1) We used aqueous solvation free energy of proton for pKa calculations in acetonitrile, and (2) in the comparison between the accuracy of SMD, our revised CPCM-UAHF and COSMO-RS, we forgot to use the keyword radii = klamt in generating cosmo files of 11 ions in water. Thus, several figures and tables need to be changed; however, the conclusions reached in the Article remain unchanged. 1. Correction to pKa Values in Acetonitrile. We inadvertently used the aqueous solvation free energy of proton in pKa calculations in acetonitrile in the original version. Here we recalculate all pKas in acetonitrile using the experimental value of the solvation free energy of proton as −260.2 kcal/mol as taken from ref (1). All calculated pKa values in tab “pKa calculations” in our original Supporting Information have been corrected; see the corrected Supporting Information. It can be seen that the accuracy of pKa calculations in acetonitrile reported previously is underestimated. When using the correct solvation free energy of the proton in acetonitrile, our calculated pKa results are much improved compared that reported previously. Figures 3 and 5 and Supporting Information Tables S11 and S12 have been changed. Figure 1. Mean absolute errors (MAEs) of solvation Gibbs free energies of neutral and ionic solutes calculated with different solvation models. Figure 3. Mean absolute errors (MAEs) in the nonaqueous (acetonitrile) pKa values of Scheme 2, as calculated using mixed ESF values. pKa values of solute types labeled in red (PYR1–PYR5) are calculated with cations and neutrals, while those in blue are calculated with neutrals and anions. For all other computations, see Computational Details. Figure 5. Mean absolute errors (MAEs) of 20 pKa calculations in acetonitrile obtained with different ESF combinations using the IEFPCM-UAKS method. For example, 1-0-3 means using ESF = 1.1, 1.0, and 1.3, respectively, for neutrals, cations, and anions. In our original work, based on the results in the original Figure 5, we concluded the optimal ESF value of neutrals in acetonitrile might need a slight change. While here, 2-1-4 gives the smallest overall MAE, which proves using the ESF values obtained from our benchmarking gives the best results among all possible ESF combinations and does not need further change. 2. Correction to COSMO-RS Solvation Free Energies of Ions in Water. In the comparison between the accuracy of SMD, our revised CPCM-UAHF and COSMO-RS, we inadvertently forgot to use the keyword radii = klamt in generating cosmo files of the 11 ions in water, which makes the error of COSMO-RS quite large. Related data in the “CPCM-UAHF VS SMD VS COSMO-RS” tab in the Supporting Information and Figure 1 in the main text need to be changed. Note that only COSMO-RS solvation free energies of ions in water need to be changed, and based on the new results, our revised CPCM-UAHF model still outperforms COSMO-RS but not SMD, thus the main conclusion and discussion in comparing these three solvation models in our original paper does not change. The “CPCM-UAHF VS SMD VS COSMO-RS” tab in the Supporting Information now contains the correct solvation free energies of 11 ions. Thus, in Figure 1 of the publication, the mean absolute error of the COSMO-RS solvation free energies of ions should be 8.36 kcal/mol, and that of all 82 solute/solvent combinations should be 2.36 kcal/mol. The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jctc.9b01191.
  • Detailed data of ESF benchmarking, comparison between CPCM-UAHF, SMD, and COSMO-RS; calculation results at ωB97X-D/6-31+G(d,p) theoretical level (XLSX)
  • Main results of ESF benchmarking; raw data of pKa calculations; optimized structures of 65 molecules (PDF)
Detailed data of ESF benchmarking, comparison between CPCM-UAHF, SMD, and COSMO-RS; calculation results at ωB97X-D/6-31+G(d,p) theoretical level (XLSX) Main results of ESF benchmarking; raw data of pKa calculations; optimized structures of 65 molecules (PDF) Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html. This article references 1 other publications.


中文翻译:

使用优化的静电比例因子来提高PCM-UAHF和PCM-UAKS计算精度的校正。

在手稿的准备过程中,我们无意中犯了两个错误:(1)我们使用质子的水溶剂化自由能对乙腈中的p K a进行了计算;(2)在对SMD精度(我们修改过的CPCM-UAHF)进行比较时和COSMO-RS,我们忘记了在生成水中11个离子的cosmo文件时使用关键字radii = klamt。因此,需要更改几个图形和表格。但是,该条中得出的结论保持不变。1.校正乙腈中的p K a。在原始版本中,我们无意中将质子的水溶剂化自由能用于p K a的乙腈计算中。在这里,我们重新计算所有p乙腈中的K a s是质子的溶剂化自由能的实验值,从参考文献(1)中得出的值为-260.2 kcal / mol。我们原始支持信息中“ p K a计算”选项卡中所有计算出的p K a值均已更正;请参阅更正后的支持信息。可以看出,先前报道的乙腈中p K a计算的准确性被低估了。当使用正确的质子在乙腈中的溶剂化自由能时,我们计算出的p K a结果比以前报道的要大得多。图3和5以及支持信息表S11和S12已更改。图1.溶剂化的平均绝对误差(MAE)用不同的溶剂化模型计算得出的中性和离子性溶质的吉布斯自由能。图3.使用混合ESF值计算的方案2的非水(乙腈)p K a值中的平均绝对误差(MAE)。p K a以红色标记的溶质类型(PYR1-PYR5)的值是用阳离子和中性离子计算的,而用蓝色标记的溶质类型值是用中性离子和阴离子计算的。有关所有其他计算,请参见计算详细信息。图5. 20 p K a的平均绝对误差(MAE)使用IEFPCM-UAKS方法,用不同的ESF组合获得的乙腈计算值。例如,1-0-3表示分别对中性,阳离子和阴离子使用ESF = 1.1、1.0和1.3。在我们的原始工作中,基于原始图5中的结果,我们得出结论:乙腈中性中性物质的最佳ESF值可能需要稍作更改。虽然在这里2-1-4给出了最小的总MAE,这证明了使用从我们的基准测试中获得的ESF值可以在所有可能的ESF组合中提供最佳结果,并且不需要进一步更改。2.对水中离子的COSMO-RS溶剂化自由能的校正。在SMD,我们修订的CPCM-UAHF和COSMO-RS的精度之间的比较中,我们无意间忘记使用关键字radii = klamt在水中生成11个离子的cosmo文件时,这会使COSMO-RS的误差很大。需要更改支持信息中的“ CPCM-UAHF VS SMD VS COSMO-RS”选项卡中的相关数据以及正文中的图1。请注意,仅需要更改水中离子的COSMO-RS溶剂化自由能,并且基于新结果,我们修改后的CPCM-UAHF模型仍然优于COSMO-RS,但不优于SMD,因此比较这三个方面的主要结论和讨论我们原始论文中的溶剂化模型没有改变。支持信息中的“ CPCM-UAHF VS SMD VS COSMO-RS”选项卡现在包含正确的11个离子的溶剂化自由能。因此,在该出版物的图1中,离子的COSMO-RS溶剂化自由能的平均绝对误差应为8.36 kcal / mol,所有82种溶质/溶剂组合的浓度应为2.36 kcal / mol。可从https://pubs.acs.org/doi/10.1021/acs.jctc.9b01191免费获得支持信息。
  • ESF基准测试的详细数据,CPCM-UAHF,SMD和COSMO-RS之间的比较;ωB97X-D/ 6-31 + G(d,p)理论水平(XLSX)的计算结果
  • ESF基准测试的主要结果;pKa计算的原始数据;65个分子的优化结构(PDF)
ESF基准测试的详细数据,CPCM-UAHF,SMD和COSMO-RS之间的比较;在ωB97X-D/ 6-31 + G(d,p)理论水平(XLSX)上的计算结果ESF基准测试的主要结果;pKa计算的原始数据;无需订阅ACS Web Edition,即可获得65个分子的优化结构(PDF)电子支持信息文件。美国化学学会在任何可版权保护的支持信息中均拥有版权权益。ACS网站上可用的文件只能下载供个人使用。未经美国化学学会的许可,不得以其他方式允许用户以机器可读形式或任何其他形式全部或部分复制,重新发布,重新分发或出售ACS网站上的任何支持信息。为了获得复制许可,重新发布和重新分发此材料,请求者必须通过RightsLink许可系统处理自己的请求。有关如何使用RightsLink权限系统的信息,请访问http://pubs.acs.org/page/copyright/permissions.html。本文引用了其他1个出版物。
更新日期:2019-12-20
down
wechat
bug