当前位置: X-MOL 学术Adv. Funct. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enhanced Magnetic Anisotropy and Orbital Symmetry Breaking in Manganite Heterostructures
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2019-12-19 , DOI: 10.1002/adfm.201909536
Pingfan Chen 1 , Zhen Huang 2 , Mengsha Li 1 , Xiaojiang Yu 3 , Xiaohan Wu 1 , Changjian Li 1 , Nina Bao 1 , Shengwei Zeng 2, 4 , Ping Yang 1, 3 , Lili Qu 5 , Jingsheng Chen 1 , Jun Ding 1 , Stephen John Pennycook 1 , Wenbin Wu 5 , Thirumalai Venky Venkatesan 1, 2, 4, 6, 7 , Ariando Ariando 2, 4, 6 , Gan Moog Chow 1
Affiliation  

Manipulating magnetic anisotropy in complex oxide heterostructures has attracted much attention. Here, three interface‐engineering approaches are applied to address two general issues with controlling magnetic anisotropy in the La2/3Sr1/3MnO3 heterostructure. One is the paradox arising from the competition between Mn3d–O2p orbital hybridization and MnO6 crystal field. The other is the interfacial region where the nonuniform MnO bond length d and MnOMn bond angle θ disturb the structural modulation. When the interfacial region is suppressed in the interface‐engineered samples, the lateral magnetic anisotropy energy is increased eighteen times. The d‐mediated anisotropic crystal filed that overwhelms the orbital hybridization causes the lateral symmetry breaking of the Mn 3dx2y2 orbital, resulting in enhanced magnetic anisotropy. This is different from the classic Jahn–Teller effect where the lateral symmetry is always preserved. Moreover, the quantitative analysis on X‐ray linear dichroism data suggests a direct correlation between Mn 3dx2y2 orbital symmetry breaking and magnetic anisotropy energy. The findings not only advance the understanding of magnetic anisotropy in manganite heterostructures but also can be extended to other complex oxides and perovskite materials with correlated degrees of freedom.

中文翻译:

锰异质结构中增强的磁各向异性和轨道对称性破坏

在复杂的氧化物异质结构中操纵磁各向异性已经引起了广泛的关注。在这里,应用三种界面工程方法来解决控制La 2/3 Sr 1/3 MnO 3异质结构中的磁各向异性的两个一般性问题。一种是由Mn 3d –O 2p轨道杂交与MnO 6晶体场之间的竞争引起的悖论。另一种是界面区域,其中所述非均匀的Mn O键长度d和Mn ö Mn键角θ干扰结构调制。当界面工程样品中的界面区域受到抑制时,横向磁各向异性能量将增加18倍。所述d介导日提交的各向异性晶体压垮轨道杂交引起的Mn 3d的横向对称断裂X 2 - Ÿ 2轨道,导致增强的磁各向异性。这与经典的Jahn–Teller效应不同,后者始终保持横向对称。此外,对X射线线性二向色性数据的定量分析表明,Mn 3d x 2 - y 2之间存在直接相关性轨道对称性破坏和磁各向异性能。这些发现不仅促进了对锰异质结构中磁各向异性的理解,而且可以扩展到具有相关自由度的其他复杂氧化物和钙钛矿材料。
更新日期:2020-02-12
down
wechat
bug