当前位置: X-MOL 学术Mater. Today › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Facet-controlled Pt–Ir nanocrystals with substantially enhanced activity and durability towards oxygen reduction
Materials Today ( IF 24.2 ) Pub Date : 2020-05-01 , DOI: 10.1016/j.mattod.2019.11.002
Jiawei Zhu , Ahmed O. Elnabawy , Zhiheng Lyu , Minghao Xie , Ellen A. Murray , Zitao Chen , Wanqin Jin , Manos Mavrikakis , Younan Xia

Abstract Nanocrystals made of Pt–Ir alloys are fascinating catalysts towards the oxygen reduction reaction (ORR), but the lack of control over their surface atomic structures hinders further optimization of their catalytic performance. Here we report, for the first time, a class of highly active and durable ORR catalysts based on Pd@Pt–Ir nanocrystals with well-controlled facets. With an average of 1.6 atomic layers of a Pt4Ir alloy on the surface, the nanocrystals can be made in cubic, octahedral, and icosahedral shapes to present Pt–Ir {1 0 0}, {1 1 1}, and {1 1 1} plus twin boundaries, respectively. The Pd@Pt–Ir nanocrystals exhibit not only facet-dependent catalytic properties but also substantially enhanced ORR activity and durability relative to a commercial Pt/C and their Pd@Pt counterparts. Among them, the Pd@Pt–Ir icosahedra deliver the best performance, with a mass activity of 1.88 A·mg−1Pt at 0.9 V, which is almost 15 times that of the commercial Pt/C. Our density functional theory (DFT) calculations attribute the high activity of the Pd@Pt–Ir nanocrystals, and the facet dependence of these activities, to easier protonation of O* and OH* under relevant OH* coverages, relative to the corresponding energetics on clean Pd@Pt surfaces. The DFT calculations also indicate that incorporating Ir atoms into the Pt lattice destabilizes OH–OH interactions on the surface, thereby raising the oxidation potential of Pt and greatly improving the catalytic durability.

中文翻译:

晶面控制的 Pt-Ir 纳米晶体对氧还原具有显着增强的活性和耐久性

摘要 由 Pt-Ir 合金制成的纳米晶体是氧还原反应 (ORR) 的迷人催化剂,但缺乏对其表面原子结构的控制阻碍了其催化性能的进一步优化。在这里,我们首次报告了一类基于 Pd@Pt-Ir 纳米晶体的具有良好控制面的高活性和耐用的 ORR 催化剂。表面平均有 1.6 个原子层的 Pt4Ir 合金,纳米晶体可以制成立方、八面体和二十面体形状,以呈现 Pt-Ir {1 0 0}、{1 1 1} 和 {1 1 1 } 分别加上双边界。Pd@Pt-Ir 纳米晶体不仅表现出依赖于面的催化性能,而且相对于商业 Pt/C 及其 Pd@Pt 对应物,ORR 活性和耐久性显着增强。他们之中,Pd@Pt-Ir 二十面体性能最佳,在 0.9 V 时的质量活度为 1.88 A·mg-1Pt,几乎是商业 Pt/C 的 15 倍。我们的密度泛函理论 (DFT) 计算将 Pd@Pt-Ir 纳米晶体的高活性以及这些活性的小面依赖性归因于相关 OH* 覆盖下的 O* 和 OH* 更容易质子化,相对于相应的能量学清洁 Pd@Pt 表面。DFT 计算还表明,将 Ir 原子掺入 Pt 晶格会破坏表面上的 OH-OH 相互作用,从而提高 Pt 的氧化电位并大大提高催化耐久性。我们的密度泛函理论 (DFT) 计算将 Pd@Pt-Ir 纳米晶体的高活性以及这些活性的小面依赖性归因于相关 OH* 覆盖下的 O* 和 OH* 更容易质子化,相对于相应的能量学清洁 Pd@Pt 表面。DFT 计算还表明,将 Ir 原子掺入 Pt 晶格会破坏表面上的 OH-OH 相互作用,从而提高 Pt 的氧化电位并大大提高催化耐久性。我们的密度泛函理论 (DFT) 计算将 Pd@Pt-Ir 纳米晶体的高活性以及这些活性的小面依赖性归因于相关 OH* 覆盖下的 O* 和 OH* 更容易质子化,相对于相应的能量学清洁 Pd@Pt 表面。DFT 计算还表明,将 Ir 原子掺入 Pt 晶格会破坏表面上的 OH-OH 相互作用,从而提高 Pt 的氧化电位并大大提高催化耐久性。
更新日期:2020-05-01
down
wechat
bug