当前位置: X-MOL 学术Compos. Part B Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Constitutive modeling for time- and temperature-dependent behavior of composites
Composites Part B: Engineering ( IF 12.7 ) Pub Date : 2019-12-19 , DOI: 10.1016/j.compositesb.2019.107726
Orzuri Rique , Xin Liu , Wenbin Yu , R. Byron Pipes

Structural integrity, durability, and thermal stability represent critical areas for adequately modeling the behavior of composite materials. Polymeric matrices are prone to have time-dependent behavior very sensitive to changes in temperature that influence the effective properties of the composite. This study extends mechanics of structure genome (MSG) to construct a linear thermoviscoelastic model that allows to homogenize three-dimensional heterogeneous materials made of constituents with time- and temperature-dependent behavior. The formulation models the transient strain energy based on integral formulation for thermorheologically simple materials and treats thermal expansion creep as inherent material behavior. An analytical three-dimensional thermoviscoelastic homogenization solution has been derived for laminates modeled as an equivalent, homogeneous, anisotropic solid. Three-dimensional representative volume element (RVE) analyses and direct numerical simulations using a commercial finite element software have been conducted to verify the accuracy of the MSG homogenization. Unlike MSG, the RVE method exhibits limitations to properly capture the long-term behavior of effective coefficients of thermal expansion (CTEs) when time-dependent constituent CTEs are considered. The analyses of the homogenized properties also reveal that the shift factor of the polymeric matrix drives the temperature dependencies of the effective CTEs and engineering constants of the heterogeneous composite material regardless of the structural scale.



中文翻译:

复合材料随时间和温度变化的本构模型

结构完整性,耐用性和热稳定性是充分建模复合材料性能的关键领域。聚合物基体倾向于具有随时间变化的行为,这些行为对温度变化非常敏感,而温度变化会影响复合材料的有效性能。这项研究扩展了结构基因组(MSG)的力学,以构建线性热粘弹性模型,该模型允许均质化具有时间和温度依赖性行为的成分组成的三维异质材料。该公式基于热流变简单材料的整体公式对瞬态应变能进行建模,并将热膨胀蠕变视为固有的材料行为。对于等效模型,已为层压板导出了三维三维热粘弹性分析均质化解决方案,均匀的各向异性固体。已经进行了三维代表性体积元素(RVE)分析和使用商业有限元软件的直接数值模拟,以验证MSG均质化的准确性。与MSG不同,RVE方法在考虑与时间有关的组成CTE时表现出局限性,无法正确捕获有效热膨胀系数(CTE)的长期行为。对均质特性的分析还表明,无论结构规模如何,聚合物基体的位移因子都会驱动有效CTE的温度依赖性和非均质复合材料的工程常数。已经进行了三维代表性体积元素(RVE)分析和使用商业有限元软件的直接数值模拟,以验证MSG均质化的准确性。与MSG不同,RVE方法在考虑与时间有关的组成CTE时表现出局限性,无法正确捕获有效热膨胀系数(CTE)的长期行为。对均质特性的分析还表明,无论结构规模如何,聚合物基体的位移因子都会驱动有效CTE的温度依赖性和非均质复合材料的工程常数。已经进行了三维代表性体积元素(RVE)分析和使用商业有限元软件的直接数值模拟,以验证MSG均质化的准确性。与MSG不同,RVE方法在考虑与时间有关的组成CTE时表现出局限性,无法正确捕获有效热膨胀系数(CTE)的长期行为。对均质特性的分析还表明,无论结构规模如何,聚合物基体的位移因子都会驱动有效CTE的温度依赖性和非均质复合材料的工程常数。当考虑时间相关的构成CTE时,RVE方法表现出局限性,无法正确捕获有效热膨胀系数(CTE)的长期行为。对均质特性的分析还表明,无论结构规模如何,聚合物基体的位移因子都会驱动有效CTE的温度依赖性和非均质复合材料的工程常数。当考虑时间相关的构成CTE时,RVE方法表现出局限性,无法正确捕获有效热膨胀系数(CTE)的长期行为。对均质特性的分析还表明,无论结构规模如何,聚合物基体的位移因子都会驱动有效CTE的温度依赖性和非均质复合材料的工程常数。

更新日期:2019-12-19
down
wechat
bug