当前位置: X-MOL 学术Polym. Degrad. Stabil. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
In vivo degradation study of polyvinylidene fluoride/polybutylene succinate/modified organic montmorillonite nanocomposite films implanted in the gastrointestinal tract
Polymer Degradation and Stability ( IF 6.3 ) Pub Date : 2019-12-18 , DOI: 10.1016/j.polymdegradstab.2019.109058
Chung-Feng Jeffrey Kuo , Hao-Yu Wang , Adhimoorthy Prasannan , Juin-Yih Lai , Jun-Sheng Wang , Hao-Ming Chang , Hsieh-Chih Tsai

A duodenal barrier treatment implanted in gastrointestinal (GI) tract prevents the direct contact of food with the duodenal wall, which helps control the plasma glucose by manipulating the intestinal hormone and insulin secretion. Duodenal barrier material design has to withstand the stress of enterogastric peristalsis and be degradable to avoid damaging the intestinal tissue during its removal when the treatment finished. Most of the biodegradable polymer based implanted materials in the digestive tract were failed to withstand the erosion by gastric acid and intestinal juice. In this regards, composites from polybutylene succinate (PBS) shows weaker stability while used in digestive track, but it could improve towards less prone to sticking to the intestinal wall in the digestive tract through reduce the incidences of infection and inflammation while mixed with poly(vinylidene fluoride) (PVDF). Moreover, addition of nanosized additives like montmorillonite to polymer nanocomposites can offer versatile mechanical stability and sustainable degradation. Therefore, in this study, a polymer nanocomposite with degradability and high mechanical properties was prepared by blending (PVDF with biodegradable PBS and organic montmorillonite (OMMT). The nanocomposite with 3 wt% OMMT (PVDF90/PBS10/OMMT3wt%) exhibited the highest tensile strength of 62.61 MPa, which exceeds the tensile strength required for application to soft tissues (46.5 MPa) due to uniform distribution of OMMT. The result showed that the PBS films degraded much faster than the nanocomposite film did in the duodenum and stomach. The rates of weight loss of the nanocomposite in stomach and duodenum were 1.88% and 0.88%, respectively, which indicated that the degradation rate of the nanocomposite film is faster in the stomach than in the duodenum. The nanocomposite maintained a high tensile strength of 60.85 MPa after one month of implantation. Moreover, histological examination revealed mild inflammation of tissue and negligible adverse effects. The in vivo degradation test suggests that the PVDF/PBS/OMMT nanocomposite prepared in this study have the potential for application as a biodegradable duodenal barrier.



中文翻译:

植入胃肠道的聚偏二氟乙烯/聚琥珀酸丁二酯/改性有机蒙脱土纳米复合薄膜的体内降解研究

植入胃肠道的十二指肠屏障治疗可防止食物与十二指肠壁直接接触,从而通过操纵肠道激素和胰岛素分泌来帮助控制血浆葡萄糖。十二指肠屏障材料的设计必须能够承受肠胃蠕动的压力,并且必须能够降解,以免在治疗结束后切除肠组织时损坏肠组织。消化道中大多数可生物降解的聚合物基植入材料无法承受胃酸和肠液的侵蚀。在这方面,聚丁二酸丁二酯(PBS)制成的复合材料在消化道中使用时显示出较弱的稳定性,但是通过减少与聚偏二氟乙烯(PVDF)混合时的感染和发炎的发生率,它可以改善不易粘在消化道肠壁的状况。此外,在聚合物纳米复合材料中添加蒙脱石等纳米级添加剂可以提供广泛的机械稳定性和可持续降解性。因此,在这项研究中,通过共混(具有生物可降解的PBS和有机蒙脱土(OMMT)的PVDF)制备了具有可降解性和高机械性能的聚合物纳米复合材料,具有3 wt%OMMT(PVDF90 / PBS10 / OMMT3wt%)的纳米复合材料表现出最高的拉伸强度。强度为62.61 MPa,由于OMMT的均匀分布,超过了应用于软组织所需的拉伸强度(46.5 MPa)。结果表明,PBS膜的降解比十二指肠和胃中纳米复合膜的降解快得多。纳米复合材料在胃和十二指肠中的失重率分别为1.88%和0.88%,这表明纳米复合膜在胃中的降解速率比在十二指肠中更快。植入一个月后,纳米复合材料保持了60.85 MPa的高拉伸强度。此外,组织学检查显示组织有轻度炎症,副作用可忽略不计。体内降解测试表明,在这项研究中制备的PVDF / PBS / OMMT纳米复合材料具有作为可生物降解的十二指肠屏障应用的潜力。分别表明,该纳米复合膜在胃中的降解速率比在十二指肠中的降解速率更快。植入一个月后,纳米复合材料保持了60.85 MPa的高拉伸强度。此外,组织学检查显示组织有轻度炎症,副作用可忽略不计。体内降解测试表明,本研究中制备的PVDF / PBS / OMMT纳米复合材料具有作为可生物降解的十二指肠屏障应用的潜力。分别表明,该纳米复合膜在胃中的降解速率比在十二指肠中的降解速率更快。植入一个月后,纳米复合材料保持了60.85 MPa的高拉伸强度。此外,组织学检查显示组织有轻度炎症,副作用可忽略不计。体内降解测试表明,本研究中制备的PVDF / PBS / OMMT纳米复合材料具有作为可生物降解的十二指肠屏障应用的潜力。

更新日期:2019-12-19
down
wechat
bug