当前位置: X-MOL 学术Mol. Simulat. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
On using the anisotropy in the thermal resistance of solid–fluid interfaces to more effectively cool nano-electronics
Molecular Simulation ( IF 1.9 ) Pub Date : 2019-11-06 , DOI: 10.1080/08927022.2019.1684488
Xiaoyu Wang 1 , David Venerus 1 , Ishwar K. Puri 2 , Sohail Murad 1
Affiliation  

ABSTRACT As power-intensive electronic components are further miniaturised into nanodevices, their heat dissipation is a serious operational and safety concern. While nanochannels and nanofins are often used for facilitating heat dissipation, the liquid-solid interfaces that form (Kapitza resistance), become significant barriers to heat transfer. We demonstrate that the thermal resistance of these interfaces is strongly anisotropic. The resistance of an interface to heat transfer parallel to the interface (solid surface) is significantly smaller than the more well-known Kapitza resistance (associated with heat transfer across the interface – perpendicular to the solid surface) and is even lower than that of the bulk fluid. As a result, if devices are designed to dissipate heat parallel to an interface, heat dissipation can be significantly enhanced. Our studies are also able to explain the molecular basis of this observed anisotropy in interfacial resistance, which has hitherto remained unreported for solid–liquid interfaces.

中文翻译:

利用固液界面热阻的各向异性更有效地冷却纳米电子器件

摘要 随着功率密集型电子元件进一步小型化为纳米器件,它们的散热是一个严重的操作和安全问题。虽然纳米通道和纳米鳍通常用于促进散热,但形成的液固界面(卡皮察电阻)成为热传递的重要障碍。我们证明这些界面的热阻具有很强的各向异性。平行于界面(固体表面)的界面传热阻力明显小于更广为人知的 Kapitza 阻力(与跨界面的传热相关 - 垂直于固体表面),甚至低于大量流体。因此,如果设备设计为与接口平行散热,散热可以显着增强。我们的研究还能够解释这种观察到的界面电阻各向异性的分子基础,迄今为止,固-液界面仍未报道这种现象。
更新日期:2019-11-06
down
wechat
bug