当前位置: X-MOL 学术Energy Environ. Sci. › 论文详情
Oriented proton-conductive nano-sponge-facilitated polymer electrolyte membranes
Energy & Environmental Science ( IF 33.250 ) Pub Date : 2019/12/17 , DOI: 10.1039/c9ee03301g
Xin Liu; Junfeng Zhang; Chenyang Zheng; Jiandang Xue; Tong Huang; Yan Yin; Yanzhou Qin; Kui Jiao; Qing Du; Michael D. Guiver

Achieving high power output from proton exchange membrane fuel cells (PEMFCs) requires efficient proton transport in proton exchange membranes (PEMs). Since proton conductivity is closely related to membrane moisture content, operation at low relative humidity (RH) and elevated temperature has become a critical bottleneck for the practical application of PEMFCs due to severe PEM dehydration. While several strategies have sought to mitigate this, including external thermal and water management, coating of nano-cracked hydrophobic layers and optimization of membrane intrinsic water retention, only partial improvements have been realized. Here, using a membrane formulation of ferrocyano-coordinated poly(4-vinylpyridine) (CP4VP), phosphotungstic acid (PWA) and polysulfone (PSf), novel highly water-retentive PEMs are fabricated via a strong magnetic field. During magnetic-assisted membrane casting, CP4VP and PWA form a microporous Prussian blue analogue (PBA) framework with the new type of Fe–CN–W bonding, which is paramagnetic and is thus simultaneously aligned in the through-plane (TP) direction of the membrane. The neutral PSf membrane component affords mechanical strength to the embedded TP-aligned conducting channels. This new type of microporous PBA framework is highly hydrophilic and proton conductive, with micropores of ∼5.4 Å diameter, which act as nano-sponges to absorb only more retentive non-freezable water, effective for proton conduction. These nano-sponges display efficient water absorption and retention at low RH and elevated temperatures, together with a much faster hydration process than the dehydration process. Furthermore, the TP-aligned PBA channels also enable faster water transport to promote PEM proton conduction beyond any previously reported water-retentive membrane. Consequently, the novel nano-sponge-like PEMs exhibit remarkable performance in both ex situ and in situ evaluations, especially at low RH and elevated temperature, largely prevailing over the commercial benchmark Nafion® 212.
更新日期:2020-02-13

 

全部期刊列表>>
Springer Nature 2019高下载量文章和章节
化学/材料学中国作者研究精选
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
剑桥大学-
中国科学院大学化学科学学院
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug