当前位置: X-MOL 学术J. Phys. Chem. B › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Pressure-Driven Chemical Disorder in Glassy As2S3 up to 14.7 GPa, Postdensification Effects, and Applications in Materials Design.
The Journal of Physical Chemistry B ( IF 2.8 ) Pub Date : 2019-12-31 , DOI: 10.1021/acs.jpcb.9b10465
Emmanuel Soignard 1 , Oleg B Tsiok 2 , Andrey S Tverjanovich 3 , Aleksei Bytchkov 4 , Anton Sokolov 5 , Vadim V Brazhkin 2 , Chris J Benmore 6 , Eugene Bychkov 5
Affiliation  

A small difference in energy between homopolar and heteropolar bonds and the glass-forming ability of pure chalcogens leads to unexpected trends in densification mechanisms of glassy chalcogenides compared to vitreous oxides. Using high-precision compressibility measurements and in situ high-energy X-ray diffraction up to 14.7 GPa, we show a new densification route in a canonical glass As2S3. After the first reversible elastic step with a maximum pressure of 1.3 GPa, characterized by a strong reduction of voids and cavities, a significant bonding or chemical disorder is developed under higher pressure, reaching a saturation of 30% in the population of As-As bonds above 8-9 GPa. The pressure-driven chemical disorder is accompanied by a remarkable structural relaxation and a strongly diminished optical gap and determines structural, vibrational, and optical properties under and after cold compression. The decompressed recovered glass conserves a dark color and exhibits two relaxation processes: (a) fast (a few days) and (b) slow (months/years at room temperature). The enhanced refractive index of the recovered glass is promising for optical applications with improved functionalities. A nearly permanent red shift in optical absorption after decompression can be used in high-impact-force optical sensors.

中文翻译:

高达14.7 GPa的玻璃状As2S3中的压力驱动化学紊乱,后致密化效应及其在材料设计中的应用。

与硫氧化物相比,同质和异质键之间的能量差异很小,并且纯硫属元素的玻璃形成能力导致玻璃质硫属元素的致密化机制出现了意想不到的趋势。使用高精度可压缩性测量和高达14.7 GPa的原位高能X射线衍射,我们在规范玻璃As2S3中显示了一种新的致密化途径。在第一个可逆的弹性步骤(最大压力为1.3 GPa)以明显减少空隙和空腔为特征之后,在较高的压力下会形成显着的键合或化学无序现象,As-As键合中的饱和度达到30%高于8-9 GPa。压力驱动的化学紊乱伴随着明显的结构弛豫和强烈减小的光学间隙,并决定了结构,振动,压缩后和压缩后的光学性能。经减压的回收玻璃保留深色,并表现出两个松弛过程:(a)快速(几天)和(b)缓慢(室温下的月/年)。回收玻璃的提高的折射率对于具有改进功能的光学应用是有希望的。减压后光学吸收中几乎永久性的红移可用于高冲击力光学传感器。
更新日期:2019-12-31
down
wechat
bug