当前位置: X-MOL 学术Compos. Part B Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Compressive behavior of stretched and composite microlattice metamaterial for energy absorption applications
Composites Part B: Engineering ( IF 13.1 ) Pub Date : 2019-12-17 , DOI: 10.1016/j.compositesb.2019.107715
Mahmoud M. Osman , Mostafa Shazly , Ehab A. El-Danaf , Parastoo Jamshidi , Moataz M. Attallah

A new proposed truss lattice metamaterial is introduced and compared with the conventional octet truss lattice (OTL) material with regards to specific energy absorption (SEA) and energy absorption efficiency (EAE). The proposed lattice architecture resembles the Face-Centered Cubic (FCC) metamaterial with a mesostructural unit cell with an aspect ratio of 1:1:2, referred to as the stretched cell lattice (SCL). SCL and OTL samples were fabricated from stainless steel 316L by selective laser melting (SLM). Quasi-static compression experiments on the SLM fabricated metamaterials revealed an unstable twisting deformation mode for the SCL, whereas a stable crushing behavior was observed for the OTL. SCL samples provided higher SEA and EAE than OTL by 26% and 17%, respectively. Additionally, it was shown analytically, numerically and experimentally that the yield strength of the proposed SCL is ∼80% higher than that of the OTL metamaterials of the same base material and relative density. A hybrid composite lattice structure based on acrylic matrix and the additively manufactured microlattice metamaterials was produced to enhance the struts buckling resistance. The hybrid composite showed a 47% higher specific strength while the SEA and EAE dropped by 31.5% and 30.7%, respectively, when compared to the bare stainless steel microlattice. Dynamic compression experiments using Split Hopkinson Pressure Bar (SHPB) at strain rates in the order of 103/s demonstrated a similar deformation plateau as the static compression experiments with a dynamic increase factor (DIF) of ∼1.3 for the bare stainless steel metamaterials and ∼2 for the acrylic-stainless steel hybrid composite material.



中文翻译:

拉伸和复合微晶格超材料在能量吸收应用中的压缩行为

介绍了一种新提出的桁架晶格超材料,并将其与传统的八位桁架晶格(OTL)材料进行比能量吸收(SEA)和能量吸收效率(EAE)的比较。所提出的晶格架构类似于面心立方(FCC)超材料,其介观晶胞的纵横比为1:1:2,称为拉伸晶格(SCL)。SCL和OTL样品是通过选择性激光熔化(SLM)由316L不锈钢制成的。在SLM制成的超材料上进行的准静态压缩实验显示,SCL的扭曲变形模式不稳定,而OTL的压缩行为却稳定。SCL样本提供的SEA和EAE比OTL分别高出26%和17%。此外,通过分析显示,在数值和实验上,所提出的SCL的屈服强度比具有相同基材和相对密度的OTL超材料的屈服强度高约80%。产生了基于丙烯酸基体和增材制造的微晶格超材料的混合复合晶格结构,以增强支柱的抗屈曲性。与裸不锈钢微晶格相比,杂化复合材料的比强度提高了47%,而SEA和EAE分别下降了31.5%和30.7%。使用Split Hopkinson压力棒(SHPB)进行10量级应变速率的动态压缩实验 产生了基于丙烯酸基体和增材制造的微晶格超材料的混合复合晶格结构,以增强支柱的抗屈曲性。与裸不锈钢微晶格相比,杂化复合材料的比强度提高了47%,而SEA和EAE分别下降了31.5%和30.7%。使用Split Hopkinson压力棒(SHPB)进行10量级应变速率的动态压缩实验 产生了基于丙烯酸基体和增材制造的微晶格超材料的混合复合晶格结构,以增强支柱的抗屈曲性。与裸不锈钢微晶格相比,杂化复合材料的比强度提高了47%,而SEA和EAE分别下降了31.5%和30.7%。使用Split Hopkinson压力棒(SHPB)进行10量级应变速率的动态压缩实验3 / s表现出与静态压缩实验相似的变形平稳期,裸不锈钢超材料的动态增加因子(DIF)为〜1.3,丙烯酸-不锈钢杂化复合材料的动态增加因子(DIF)为〜2。

更新日期:2019-12-18
down
wechat
bug