当前位置: X-MOL 学术ACS Catal. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Symmetrical Exsolution of Rh Nanoparticles in Solid Oxide Cells for Efficient Syngas Production from Greenhouse Gases
ACS Catalysis ( IF 11.3 ) Pub Date : 2019-12-31 , DOI: 10.1021/acscatal.9b04424
Vasileios Kyriakou 1 , Dragos Neagu 2 , Georgios Zafeiropoulos 1 , Rakesh Kumar Sharma 1 , Chenyang Tang 2 , Kalliopi Kousi 2 , Ian S. Metcalfe 2 , Mauritius C. M. van de Sanden 1 , Mihalis N. Tsampas 1
Affiliation  

Carbon dioxide and steam solid oxide co-electrolysis is a key technology for exploiting renewable electricity to generate syngas feedstock for the Fischer–Tropsch synthesis. The integration of this process with methane partial oxidation in a single cell can eliminate or even reverse the electrical power demands of co-electrolysis, while simultaneously producing syngas at industrially attractive H2/CO ratios. Nevertheless, this system is rather complex and requires catalytically active and coke tolerant electrodes. Here, we report on a low-substitution rhodium-titanate perovskite (La0.43Ca0.37Rh0.06Ti0.94O3) electrode for the process, capable of exsolving high Rh nanoparticle populations, and assembled in a symmetrical solid oxide cell configuration. By introducing dry methane to the anode compartment, the electricity demands are impressively decreased, even allowing syngas and electricity cogeneration. To provide further insight on the Rh nanoparticles role on methane-to-syngas conversion, we adjusted their size and population by altering the reduction temperature of the perovskite. Our results exemplify how the exsolution concept can be employed to efficiently exploit noble metals for activating low-reactivity greenhouse gases in challenging energy-related applications.

中文翻译:

Rh纳米粒子在固体氧化物电池中的对称萃取,可有效利用温室气体生产合成气

二氧化碳和蒸汽固体氧化物的共电解技术是利用可再生电力为费-托合成法生产合成气原料的一项关键技术。在单个电池中将该过程与甲烷部分氧化相结合可以消除甚至逆转共电解的电力需求,同时以工业上有吸引力的H 2 / CO比生产合成气。然而,该系统相当复杂,并且需要催化活性和耐焦炭的电极。在这里,我们报道了一种低取代度的钛酸铑钙钛矿(La 0.43 Ca 0.37 Rh 0.06 Ti 0.94 O 3)电极,可以溶解高Rh纳米粒子,并以对称的固体氧化物电池配置组装。通过将干燥的甲烷引入阳极室,电力需求显着降低,甚至允许合成气和热电联产。为了进一步了解Rh纳米颗粒在甲烷转化为合成气中的作用,我们通过改变钙钛矿的还原温度来调整它们的大小和数量。我们的结果例证了在具有挑战性的能源相关应用中,可以如何使用解离概念来有效利用贵金属来活化低反应性温室气体。
更新日期:2019-12-31
down
wechat
bug