当前位置: X-MOL 学术J. Catal. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
ITO regulated high-performance n-Si/ITO/α-Fe2O3 Z-scheme heterostructure towards photoelectrochemical water splitting
Journal of Catalysis ( IF 7.3 ) Pub Date : 2019-12-14 , DOI: 10.1016/j.jcat.2019.11.033
Deqiang Feng , Jiangtao Qu , Rui Zhang , Xingjun Sun , Lingcheng Zheng , Hui Liu , Xinghua Zhang , Zunming Lu , Feng Lu , Weihua Wang , Hong Dong , Yahui Cheng , Hui Liu , Rongkun Zheng

The deficiencies in the separating photogenerated electrons/holes in the bulk and driving them across the interface of semiconductor/electrolyte are the major issues that limit the photoelectrochemical (PEC) performance of hematite (α-Fe2O3) photoelectrodes. In this work, a Z-scheme planar heterostructure of n-Si and α-Fe2O3 was designed and constructed by a facial ion-beam assisted deposition technique with the best match of the optical absorption depth, the film thickness and the space charge region thickness. A thin ITO layer (~10 nm) was sandwiched in-between in order to achieve the optimal carrier separation capacity, and the IrOx cocatalysts were introduced to improve the surface reaction kinetics. The results demonstrate a significant improvement of α-Fe2O3 PEC performance: a photocurrent density was improved to 1.987 mA cm−2 (1.23 V vs. RHE), ~100 times larger than that of bare α-Fe2O3, whereas the onset potential was dropped by 0.57 V over unmodified α-Fe2O3, due to the enhanced photovoltage by n-Si and the improved surface reaction kinetics. This work advances planar α-Fe2O3-based photocatalytic cells to a new performance record for water splitting.



中文翻译:

ITO调节的高性能n -Si / ITO / α -Fe 2 O 3 Z方案异质结构对光电化学水分解的影响

分离主体中的光生电子/空穴并使其穿过半导体/电解质界面的缺陷是限制赤铁矿(α -Fe 2 O 3)光电极的光电化学(PEC)性能的主要问题。在这项工作中,通过面离子束辅助沉积技术设计和构造了n -Si和α -Fe 2 O 3的Z方案平面异质结构,其光吸收深度,膜厚度和空间的最佳匹配电荷区厚度。为了获得最佳的载流子分离能力,将ITO薄层(〜10 nm)夹在中间,并将IrO x引入助催化剂以改善表面反应动力学。结果表明,α -Fe 2 O 3 PEC性能有了显着改善:光电流密度提高到1.987 mA cm -2(1.23 V vs. RHE),比裸α -Fe 2 O 3的光电流密度大100倍,而由于未改性的α -Fe 2 O 3引发的电势下降了0.57 V ,这是由于n -Si增强了光电压并改善了表面反应动力学。这项工作推进了平面α -Fe 2 O 3的光催化电池达到了新的水分解性能记录。

更新日期:2019-12-17
down
wechat
bug