当前位置: X-MOL 学术J. Mater. Chem. B › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Red-blood-cell-membrane-enveloped magnetic nanoclusters as a biomimetic theranostic nanoplatform for bimodal imaging-guided cancer photothermal therapy.
Journal of Materials Chemistry B ( IF 6.1 ) Pub Date : 2020-01-06 , DOI: 10.1039/c9tb01829h
Sheng Wang 1 , Yipengchen Yin 2 , Wang Song 1 , Qin Zhang 2 , Zhijuan Yang 3 , Ziliang Dong 3 , Ye Xu 1 , Sanjun Cai 1 , Kuang Wang 4 , Wuli Yang 4 , Xuejun Wang 5 , Zhiqing Pang 6 , Liangzhu Feng 3
Affiliation  

The use of red blood cell (RBC) membrane coatings has recently been found to be a biomimetic strategy to confer inner core nanomaterials with improved pharmacokinetic profiles by utilizing the intrinsic long blood circulation time of RBCs. Here, we envelope superparamagnetic nanoclusters (MNCs) with RBC membrane ghosts to obtain MNC@RBCs with significantly improved physiological stability compared to that of bare MNCs. After being loaded with near-infrared (NIR) cypate molecules, the as-prepared Cyp-MNC@RBCs show remarkably increased NIR absorbance and resultant efficient photothermal conversion efficacy. By tracking the NIR fluorescence of cypate in an in vivo fluorescence imaging system, we uncover that such Cyp-MNC@RBCs upon intravenous injection show significantly improved tumor-homing capacity as compared to bare cypate-loaded MNCs. A similar result is further evidenced by recording the T2-weighted magnetic resonance imaging (MRI) signal of MNCs. Furthermore, upon exposure to 808 nm laser irradiation, the tumors grown on the mice with the intravenous injection of Cyp-MNC@RBCs show a higher temperature increase than the tumors grown on the mice injected with plain MNC@RBCs and thus are significantly suppressed via photothermal ablation. This study presents the preparation of biomimetic Cyp-MNC@RBCs with greatly improved tumor-homing capacity as multifunctional nanotheranostic agents for fluorescence and MRI bimodal imaging-guided cancer photothermal therapy.

中文翻译:

红细胞膜包裹的磁性纳米簇​​作为仿生的治疗论纳米平台,用于双峰成像引导的癌症光热疗法。

最近发现,使用红细胞(RBC)膜涂层是一种仿生策略,可通过利用RBC固有的较长血液循环时间赋予内芯纳米材料改善的药代动力学特性。在这里,我们用RBC膜鬼膜包裹超顺磁性纳米团簇(MNC),以得到与裸露的MNC相比生理稳定性显着提高的MNC @ RBC。制备的Cyp-MNC @ RBCs负载了近红外(NIR)cypate分子后,其NIR吸光度显着提高,并产生了有效的光热转化功效。通过在体内荧光成像系统中追踪细胞色素的NIR荧光,我们发现,与裸露的细胞色素加载的MNCs相比,静脉注射后这些Cyp-MNC @ RBCs具有显着改善的肿瘤归巢能力。通过记录MNC的T2加权磁共振成像(MRI)信号进一步证明了类似的结果。此外,在暴露于808 nm激光照射下,静脉注射Cyp-MNC @ RBCs的小鼠所生长的肿瘤比注射普通MNC @ RBCs的小鼠所生长的肿瘤具有更高的温度升高,因此可通过以下方式显着抑制光热消融。这项研究提出了仿生的Cyp-MNC @ RBCs的制备,该仿生Cyp-MNC @ RBCs作为多功能纳米热试剂,可用于荧光和MRI双峰成像引导的癌症光热疗法,具有大大提高的肿瘤归巢能力。静脉注射Cyp-MNC @ RBCs的小鼠所生长的肿瘤比注射普通MNC @ RBCs的小鼠所生长的肿瘤具有更高的温度升高,因此可通过光热消融显着抑制。这项研究提出了仿生的Cyp-MNC @ RBCs的制备,该仿生Cyp-MNC @ RBCs作为多功能纳米热试剂,可用于荧光和MRI双峰成像引导的癌症光热疗法,具有大大提高的肿瘤归巢能力。静脉注射Cyp-MNC @ RBCs的小鼠所生长的肿瘤比注射普通MNC @ RBCs的小鼠所生长的肿瘤具有更高的温度升高,因此可通过光热消融显着抑制。这项研究提出了仿生的Cyp-MNC @ RBCs的制备,该仿生Cyp-MNC @ RBCs作为多功能纳米热试剂,可用于荧光和MRI双峰成像引导的癌症光热疗法,具有大大提高的肿瘤归巢能力。
更新日期:2020-01-06
down
wechat
bug