当前位置: X-MOL 学术J. Biomol. NMR › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enhancing NMR derived ensembles with kinetics on multiple timescales.
Journal of Biomolecular NMR ( IF 2.4 ) Pub Date : 2019-12-14 , DOI: 10.1007/s10858-019-00288-8
Colin A Smith 1, 2, 3 , Adam Mazur 2, 4 , Ashok K Rout 2 , Stefan Becker 2 , Donghan Lee 2, 5 , Bert L de Groot 1 , Christian Griesinger 2
Affiliation  

Nuclear magnetic resonance (NMR) has the unique advantage of elucidating the structure and dynamics of biomolecules in solution at physiological temperatures, where they are in constant movement on timescales from picoseconds to milliseconds. Such motions have been shown to be critical for enzyme catalysis, allosteric regulation, and molecular recognition. With NMR being particularly sensitive to these timescales, detailed information about the kinetics can be acquired. However, nearly all methods of NMR-based biomolecular structure determination neglect kinetics, which introduces a large approximation to the underlying physics, limiting both structural resolution and the ability to accurately determine molecular flexibility. Here we present the Kinetic Ensemble approach that uses a hierarchy of interconversion rates between a set of ensemble members to rigorously calculate Nuclear Overhauser Effect (NOE) intensities. It can be used to simultaneously refine both temporal and structural coordinates. By generalizing ideas from the extended model free approach, the method can analyze the amplitudes and kinetics of motions anywhere along the backbone or side chains. Furthermore, analysis of a large set of crystal structures suggests that NOE data contains a surprising amount of high-resolution information that is better modeled using our approach. The Kinetic Ensemble approach provides the means to unify numerous types of experiments under a single quantitative framework and more fully characterize and exploit kinetically distinct protein states. While we apply the approach here to the protein ubiquitin and cross validate it with previously derived datasets, the approach can be applied to any protein for which NOE data is available.

中文翻译:

增强的NMR衍生在多个时标上具有动力学的合奏。

核磁共振(NMR)的独特优势是阐明了生理温度下溶液中生物分子的结构和动力学,其中生物分子在从皮秒到毫秒的时间范围内保持恒定的运动。已经证明这种运动对于酶催化,变构调节和分子识别是至关重要的。由于NMR对这些时间尺度特别敏感,因此可以获取有关动力学的详细信息。但是,几乎所有基于NMR的生物分子结构测定方法都忽略了动力学,这大大地掩盖了基本物理原理,从而限制了结构分辨率和精确确定分子柔性的能力。在这里,我们介绍了动力学合奏方法,该方法使用一组合奏成员之间的互转换率层次结构来严格计算核过载效应(NOE)强度。它可以用来同时完善时间和结构坐标。通过推广无模型扩展方法的思想,该方法可以分析主干或侧链上任何位置的运动幅度和动力学。此外,对大量晶体结构的分析表明,NOE数据包含大量令人惊讶的高分辨率信息,使用我们的方法可以更好地对其进行建模。动力学整合方法提供了一种方法,可以在一个定量框架下统一多种类型的实验,并且可以更全面地表征和利用动力学上不同的蛋白质状态。
更新日期:2019-12-17
down
wechat
bug